Home About us Contact | |||
Tropical Dry Forest (tropical + dry_forest)
Selected AbstractsFlying Foxes Prefer to Forage in Farmland in a Tropical Dry Forest Landscape Mosaic in FijiBIOTROPICA, Issue 2 2010Article first published online: 29 SEP 200, Matthew Scott Luskin ABSTRACT To test flying fox adaptations to a habitat mosaic with extreme deforestation, the abundance, habitat choice and feeding behavior of the Pacific flying fox, Pteropus tonganus, were investigated across 16 islands of the Yasawa archipelago, Fiji. The habitat mosaic is formed by 4.3 percent tropical dry forest and 3.3 percent farmland, leaving exotic grasslands and stands of Leucaena leucocephala to overrun the vast majority of land. Pteropus tonganus abundance was high (5757 bats) despite deforestation and hunting. Roosting sites were restricted to native forest fragments. Grasslands and stands of L. leucocephala were completely void of bats at all times. The mean foraging density in farmland was four times higher than in forests and foraging competition was routinely observed in farmland but was extremely rare in forests. The author suggests that during the study, extensive foraging in farmland was supporting the high P. tonganus population. Additionally, the preferential foraging in farmland was responsible for the low foraging densities within forests and dramatically less intraspecies competition for forest resources. Further research is needed on seed dispersal within forests and to test for seasonal variations in bat abundance and feeding. [source] Carrying Capacity and Potential Production of Ungulates for Human Use in a Mexican Tropical Dry ForestBIOTROPICA, Issue 4 2007Salvador Mandujano ABSTRACT Data are provided on the carrying capacity and potential production for sustainable human use of white-tailed deer (Odocoileus virginianus) and collared peccary (Pecari tajacu) in a protected tropical dry forest at Chamela on the Pacific coast of Mexico. In this paper, the carrying capacity was defined as the equilibrium density plus the number of animals removed by predators. The equilibrium point was estimated from the density dependent relationship between the finite population growth rate and the current density according to a logistic model. Annual density was estimated using the line transect method. Carrying capacity estimates were 16.5 to 17.2 deer/km2 and 9.3,9.5 peccaries/km2, representing a combined biomass of 841,874 kg/km2. A potential production for human use of 2.1 deer/km2 and 4.4 peccaries/km2 was estimated employing the model of Robinson and Redford (1991). The data suggest that, in the protected tropical dry forest of Chamela, the density and biomass of wild ungulates can maintain a similar or greater density and biomass than other Neotropical forests. To obtain an accurate estimation of the maximum sustainable yield (MSY), it is necessary to consider predation. From a management point of view, it is important to consider that carrying capacity varies as a function of the rainfall pattern. RESUMEN Se presentan datos acerca de la capacidad de carga y la producción potencial del venado cola blanca (Odocoileus virginianus) y pecarí de collar (Pecari tajacu) para aprovechamiento humano en un bosque tropical seco de Chamela en la costa Pacífica de México. En este trabajo se definió capacidad de carga como la densidad en el punto de equilibrio del crecimiento poblacional más el número de animales removidos por los depredadores. La densidad en equilibrio se estimó a partir de la relación de denso-dependencia entre la tasa finita de crecimiento poblacional y la densidad anual de acuerdo al modelo logístico. La densidad anual se estimó empleando el método de transecto de línea. La capacidad de carga se estimó en 16.5 a 17.2 venados/km2 y 9.3 a 9.5 pecaries/km2, y una biomasa combinada de 841 a 874 kg/km2. Empleando el modelo de Robinson y Redford (1991) se estimó una producción potencial para aprovechamiento humano de 2.1 venados/km2 y 4.4 pecaries/km2. Los datos indican que en bosque tropical seco protegido de Chamela la densidad y biomasa de los ungulados silvestres puede ser similar o mayor en comparación con otros bosques neotropicales. Para obtener una estimación precisa de la cosecha máxima sostenible es importante considerar el efecto de la depredación. Desde una perspectiva de manejo, se debe incorporar la variación en la capacidad de carga en función del patrón de lluvias. [source] Need for Integrated Research for a Sustainable Future in Tropical Dry ForestsCONSERVATION BIOLOGY, Issue 2 2005G. ARTURO SÁNCHEZ-AZOFEIFA No abstract is available for this article. [source] Effects of Season and Successional Stage on Leaf Area Index and Spectral Vegetation Indices in Three Mesoamerican Tropical Dry Forests,BIOTROPICA, Issue 4 2005Margaret E. R. Kalacska ABSTRACT We compared plant area index (PAI) and canopy openness for different successional stages in three tropical dry forest sites: Chamela, Mexico; Santa Rosa, Costa Rica; and Palo Verde, Costa Rica, in the wet and dry seasons. We also compared leaf area index (LAI) for the Costa Rican sites during the wet and dry seasons. In addition, we examined differences in canopy structure to ascertain the most influential factors on PAI/LAI. Subsequently, we explored relationships between spectral vegetation indices derived from Landsat 7 ETM+ satellite imagery and PAI/LAI to create maps of PAI/LAI for the wet season for the three sites. Specific forest structure characteristics with the greatest influence on PAI/LAI varied among the sites and were linked to climatic differences. The differences in PAI/LAI and canopy openness among the sites were explained by both the past land-use history and forest management practices. For all sites, the best-fit regression model between the spectral vegetation indices and PAI/LAI was a Lorentzian Cumulative Function. Overall, this study aimed to further research linkages between PAI/LAI and remotely sensed data while exploring unique challenges posed by this ecosystem. RESUMEN En este estudio comparamos el índice de área de plantas PAI, el índice de área foliar (LAI), y la apertura de dosel para diferentes etapas sucesionales en tres sitios del bosque seco tropical: Chamela, México; Santa Rosa, Costa Rica y Palo Verde, Costa Rica en la estación lluviosa y seca. Además, examinamos las diferencias en la estructura de dosel para indagar los factores que más influyen en el PAI/LAI. En forma adicional, exploramos las relaciones entre los índices espectrales de vegetación derivados de imágenes satelitales Landsat 7 ETM+ y el PAI/LAI para así crear mapas de PAI/LAI de la estación lluviosa para los tres sitios. En este estudio encontramos que las características específicas de la estructura del bosque con mayor influencia en PAI/LAI varían entre sitios y las mismas están asociadas a diferencias climáticas. Las diferencias en el PAI/LAI y la apertura del dosel entre los sitios son explicadas tanto por el historial de uso del suelo y asi como las prácticas de manejo del bosque. Para todos los sitios el mejor modelo de regresión entre los índices espectrales de vegetación y el PAI/LAI es la función Cumulativa Lorentziana. En general, este estudio tiene como objetivo estudiar más a fondo las relaciones entre el PAI/LAI y los datos colectados de manera remota, mientras se exploran otros retos particulares que plantea este ecosistema. [source] Phyllostomid Bat Community Structure and Abundance in Two Contrasting Tropical Dry Forests,BIOTROPICA, Issue 4 2005Kathryn E. Stoner ABSTRACT Although tropical wet forests are generally more diverse than dry forests for many faunal groups, few studies have compared bat diversity among dry forests. I compared ground level phyllostomid bat community structure between two tropical dry forests with different precipitation regimes. Parque National Palo Verde in northwestern Costa Rica represents one of the wettest tropical dry forests (rainfall 1.5 m/yr), whereas the Chamela-Cuixmala Biosphere Reserve on the Pacific coast of central Mexico represents one of the driest (750 mm/yr). Mist net sampling was conducted at the two study sites to compare changes in ground level phyllostomid bat community structure between regions and seasons. Palo Verde was more diverse than Chamela and phyllostomid species showed low similarity between sites (Classic Jaccard = 0.263). The distinct phyllostomid communities observed at these two dry forest sites demonstrates that variants of tropical dry forest can be sufficiently different in structure and composition to affect phyllostomid communities. At both dry forest sites, abundance of the two most common foraging guilds (frugivores and nectarivores) differed between seasons, with greatest numbers of individuals captured coinciding with highest chiropterophilic resource abundance. RESUMEN A pesar de que los bosques tropicales húmedos, en general, son más diversos que los bosques tropicales secos para muchos grupos de fauna, pocos estudios han comparado la diversidad de murciélogos en los bosques tropicales secos. El presente estudio compara la estructura de la comunidad de los murciélagos filostómidos a nivel del suelo entre dos tipos de bosque tropical seco con diferentes regimenes de precipitación. El parque Nacional Palo Verde esta localizado en el Noroeste de Costa Rica y representa uno de los bosques tropicales secos mas húmedos (con una precipitación de 1.5 m/año), mientras que la Reserva de la Biosfera Chamela-Cuixmala esta localizada en la costa oeste del pacífico de México y representa uno de los bosques más secos (750 mm/año). Se realizó un muestreo con redes de niebla en los dos sitios para comparar los cambios en la estructura de la comunidad de murciélagos filostómidos a nivel de suelo. Palo Verde fue más diverso que Chamela y se encontró la simultud de las especies filostomidos entre los dos sitio fue bajo (Classic Jaccard = 0.263). Las comunidades distintas de filostomidos observado en estos dos sitios de bosque seco demuestra que las variantes en el bosque tropical seco pueden ser suficientemente diferentes en estructura y composición para poder afectar la comunidad de filostomidos. En ambos bosques secos la abundancia de lo dos gremios tróficos más comunes (frugívoros y nectarívoros) fue diferente en las estaciones, con un mayor número de individuos capturados coincidiendo con una mayor abundancia de recursos quiropterofílicos. [source] Predicting and quantifying the structure of tropical dry forests in South Florida and the Neotropics using spaceborne imageryGLOBAL ECOLOGY, Issue 3 2006Thomas W. Gillespie ABSTRACT Aim, This research examines environmental theories and remote sensing methods that have been hypothesized to be associated with tropical dry forest structure. Location, Tropical dry forests of South Florida and the Neotropics. Methods, Field measurements of stand density, basal area and tree height were collected from 22 stands in South Florida and 30 stands in the Neotropics. In South Florida, field measurements were compared to climatic (temperature, precipitation, hurricane disturbance) and edaphic (rockiness, soil depth) variables, spectral indices (NDVI, IRI, MIRI) from Landsat 7 ETM+, and estimates of tree height from the Shuttle Radar Topography Mission (SRTM) and the National Elevation Dataset (NED). Environmental variables associated with tropical dry forest structure in South Florida were compared to tropical dry forest in other Neotropical sites. Results, There were significant correlations among temperature and precipitation, and stand density and tree height in South Florida. There were significant correlations between (i) stand density and mean NDVI and standard deviation of NDVI, (ii) MIRI and stand density, basal area and mean tree height, and (iii) estimates of tree height from SRTM with maximum tree height. In the Neotropics, there were no relationships between temperature or precipitation and tropical dry forest structure, however, Neotropical sites that experience hurricane disturbance had significantly shorter tree heights and higher stand densities. Main conclusions, It is possible to predict and quantify the forest structure characteristics of tropical dry forests using climatic data, Landsat 7 ETM+ imagery and SRTM data in South Florida. However, results based on climatic data are region-specific and not necessarily transferable between tropical dry forests at a continental spatial scale. Spectral indices from Landsat 7 ETM+ can be used to quantify forest structure characteristics, but SRTM data are currently not transferable to other regions. Hurricane disturbance has a significant impact on forest structure in the Neotropics. [source] Structural response of Caribbean dry forests to hurricane winds: a case study from Guánica Forest, Puerto RicoJOURNAL OF BIOGEOGRAPHY, Issue 3 2006Skip J. Van Bloem Abstract Aim, Tropical dry forests in the Caribbean have an uniquely short, shrubby structure with a high proportion of multiple-stemmed trees compared to dry forests elsewhere in the Neotropics. Previous studies have shown that this structure can arise without the loss of main stems from cutting, grazing, or other human intervention. The Caribbean has a high frequency of hurricanes, so wind may also influence forest stature. Furthermore, these forests also tend to grow on soils with low amounts of available phosphorus, which may also influence structure. The objective of this study was to assess the role of high winds in structuring dry forest, and to determine whether soil nutrient pools influence forest response following hurricane disturbance. Location, Guánica Forest, Puerto Rico. Methods, Over 2000 stems in five plots were sampled for hurricane effects within 1 week after Hurricane Georges impacted field sites in 1998. Sprout initiation, growth, and mortality were analysed for 1407 stems for 2 years after the hurricane. Soil nutrient pools were measured at the base of 456 stems to assess association between nutrients and sprout dynamics. Results, Direct effects of the hurricane were minimal, with stem mortality at < 2% and structural damage to stems at 13%, although damage was biased toward stems of larger diameter. Sprouting response was high , over 10 times as many trees had sprouts after the hurricane as before. The number of sprouts on a stem also increased significantly. Sprouting was common on stems that only suffered defoliation or had no visible effects from the hurricane. Sprout survival after 2 years was also high (> 86%). Soil nutrient pools had little effect on forest response as a whole, but phosphorus supply did influence sprout dynamics on four of the more common tree species. Main conclusions, Hurricanes are able to influence Caribbean tropical dry forest structure by reducing average stem diameter and basal area and generating significant sprouting responses. New sprouts, with ongoing survival, will maintain the high frequency of multi-stemmed trees found in this region. Sprouting is not limited to damaged stems, indicating that trees are responding to other aspects of high winds, such as short-term gravitational displacement or sway. Soil nutrients play a secondary role in sprouting dynamics of a subset of species. The short, shrubby forest structure common to the Caribbean can arise naturally as a response to hurricane winds. [source] Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approachesFUNCTIONAL ECOLOGY, Issue 4 2010Jennifer S. Powers Summary 1.,One way to simplify the high taxonomic diversity of plant species in vegetation models is to place species into groups based on shared, dominant traits. Many studies have suggested that morphological and physiological traits of tropical dry forest tree species vary with leaf habit (i.e. leaves from evergreen, deciduous or semi-deciduous species) and thus this characteristic may serve as a useful way to distinguish ecologically meaningful functional types. 2.,In this study we examine whether 10 plant traits vary with leaf habit in replicated leaves and individual trees of 87 species from a tropical dry forest in Costa Rica. We also looked for evidence of phylogenetic conservatism, i.e. closely related species sharing similar trait values compared to more distantly related taxa. 3.,While some of the traits varied within and among individual trees of the same species, interspecific variation accounted for 57,83% of the variance among samples. Four traits in addition to leaf habit showed evidence of phylogenetic conservatism, but these results were strongly dependent on the inclusion of the 18 species of legumes (Fabaceae) in our dataset. Contrary to our predictions, none of the traits we measured differed among leaf habits. However, five traits (wood density, leaf C, leaf N, N/P and C/N) varied significantly between legumes and other functional types. Furthermore, when all high-nitrogen non-legume taxa were compared to the high-nitrogen legumes, six traits excluding leaf N differed significantly, indicating that legumes are functionally different from other tree species beyond high N concentrations. Similarly, the 18 legume taxa (which all have compound leaves) also differed from other compound-leaved species for six traits, thus leaf type does not explain these patterns. 4.,Our main conclusions are that (i) a plant functional type classification based on leaf habit alone has little utility in the tropical dry forest we studied, and (ii) legumes have a different suite of traits including high leaf carbon and wood density in addition to high leaf nitrogen. Whether this result generalizes to other tropical forests is unknown, but merits future research due to the consequences of these traits for carbon storage and ecosystem processes. [source] A non-native invasive grass increases soil carbon flux in a Hawaiian tropical dry forestGLOBAL CHANGE BIOLOGY, Issue 4 2008CREIGHTON M. LITTON Abstract Non-native plants are invading terrestrial ecosystems across the globe, yet little is known about how invasions impact carbon (C) cycling or how these impacts will be influenced by climate change. We quantified the effect of a non-native C4 grass invasion on soil C pools and fluxes in a Hawaiian tropical dry forest over 2 years in which annual precipitation was average (Year 1) and ,60% higher than average (Year 2). Work was conducted in a series of forested plots where the grass understory was completely removed (removal plots) or left intact (grass plots) for 3 years before experiment initiation. We hypothesized that grass invasion would: (i) not change total soil C pools, (ii) increase the flux of C into and out of soils, and (iii) increase the sensitivity of soil C flux to variability in precipitation. In grass plots, grasses accounted for 25,34% of litter layer C and ,70% of fine root C. However, no differences were observed between treatments in the size of any soil C pools. Moreover, grass-derived C constituted a negligible fraction of the large mineral soil C pool (< 3%) despite being present in the system for ,50 years. Tree litterfall was ,45% lower in grass plots, but grass-derived litterfall more than compensated for this reduction in both years. Annual cumulative soil-surface CO2 efflux (Rsoil) was ,40% higher in grass plots in both years, and increased in both treatments by ,36% in the wetter Year 2. Despite minimal grass-derived mineral soil C, > 75% of Rsoil in grass plots was of C4 (i.e. grass) origin. These results demonstrate that grass invasion in forest ecosystems can increase the flux of C into and out of soils without changing total C pools, at least over the short term and as long as the native tree canopy remains intact, and that invasion-mediated changes in belowground C cycling are sensitive to precipitation. [source] Predicting and quantifying the structure of tropical dry forests in South Florida and the Neotropics using spaceborne imageryGLOBAL ECOLOGY, Issue 3 2006Thomas W. Gillespie ABSTRACT Aim, This research examines environmental theories and remote sensing methods that have been hypothesized to be associated with tropical dry forest structure. Location, Tropical dry forests of South Florida and the Neotropics. Methods, Field measurements of stand density, basal area and tree height were collected from 22 stands in South Florida and 30 stands in the Neotropics. In South Florida, field measurements were compared to climatic (temperature, precipitation, hurricane disturbance) and edaphic (rockiness, soil depth) variables, spectral indices (NDVI, IRI, MIRI) from Landsat 7 ETM+, and estimates of tree height from the Shuttle Radar Topography Mission (SRTM) and the National Elevation Dataset (NED). Environmental variables associated with tropical dry forest structure in South Florida were compared to tropical dry forest in other Neotropical sites. Results, There were significant correlations among temperature and precipitation, and stand density and tree height in South Florida. There were significant correlations between (i) stand density and mean NDVI and standard deviation of NDVI, (ii) MIRI and stand density, basal area and mean tree height, and (iii) estimates of tree height from SRTM with maximum tree height. In the Neotropics, there were no relationships between temperature or precipitation and tropical dry forest structure, however, Neotropical sites that experience hurricane disturbance had significantly shorter tree heights and higher stand densities. Main conclusions, It is possible to predict and quantify the forest structure characteristics of tropical dry forests using climatic data, Landsat 7 ETM+ imagery and SRTM data in South Florida. However, results based on climatic data are region-specific and not necessarily transferable between tropical dry forests at a continental spatial scale. Spectral indices from Landsat 7 ETM+ can be used to quantify forest structure characteristics, but SRTM data are currently not transferable to other regions. Hurricane disturbance has a significant impact on forest structure in the Neotropics. [source] Availability and selection of arboreal termitaria as nest-sites by Orange-fronted Parakeets Aratinga canicularis in conserved and modified landscapes in MexicoIBIS, Issue 2 2009TANIA C. SANCHEZ-MARTINEZ Few studies have investigated the use of termitaria by nesting parrots, or how this may be affected by habitat transformation. We determined selection of termitaria by nesting Orange-fronted Parakeets Aratinga canicularis, and evaluated the effect of habitat transformation on the availability of termitaria nest-sites for Parakeets in the tropical dry forest of Western Mexico. Availability of termitaria was quantified in 24 survey plots in a factorial design of six 1-ha plots in each of conserved and modified, deciduous and semi-deciduous forest. Characteristics of termitaria were determined in survey plots, as well as 21 nest-termitaria used by Parakeets, and their nearest adjacent termitarium. There was an overall density of 1.6 termitaria/ha suitable for nesting by Parakeets, which did not differ between habitats, although only 8% of apparently suitable termitaria were occupied by nesting Parakeets. However, termitaria in conserved semi-deciduous forest were significantly higher above the ground, and termitaria in conserved deciduous forest were significantly smaller in volume. In the modified landscape, termitaria were significantly lower and their volume significantly larger than in conserved landscapes. Termitaria used by nesting parrots were at a significantly greater height above the ground than the nearest adjacent termitaria. Termitarium volume did not reliably predict the likelihood of nest-site selection, although Parakeets only used termitaria between 15 and 150 l. Parakeets nesting in modified habitats used termitaria at a significantly lower height than Parakeets nesting in conserved habitat. It is unclear whether this represents a decline in nest-site quality in modified habitats, which could affect reproductive success of Parakeet populations in fragmented landscapes. [source] Pollen-based biome reconstructions for Colombia at 3000, 6000, 9000, 12 000, 15 000 and 18 000 14C yr ago: Late Quaternary tropical vegetation dynamicsJOURNAL OF QUATERNARY SCIENCE, Issue 2 2002Robert Marchant Abstract Colombian biomes are reconstructed at 45 sites from the modern period extending to the Last Glacial Maximum (LGM). The basis for our reconstruction is pollen data assigned to plant functional types and biomes at six 3000-yr intervals. A reconstruction of modern biomes is used to check the treatment of the modern pollen data set against a map of potential vegetation. This allows the biomes reconstructed at past periods to be assessed relative to the modern situation. This process also provides a check on the a priori assignment of pollen taxa to plant functional types and biomes. For the majority of the sites, the pollen data accurately reflect the potential vegetation, even though much of the original vegetation has been transformed by agricultural practices. At 18 000 14C yr BP, a generally cool and dry environment is reflected in biome, assignments of cold mixed forests, cool evergreen forests and cool grassland,shrub; the latter extending to lower altitudes than presently recorded. This signal is strongly recorded at 15 000 and 12 000 14C yr BP, the vegetation at these times also reflecting a relatively cool and dry environment. At 9000 14C yr BP there is a shift to biomes thought to result from slightly cooler environmental conditions. This trend is reversed by 6000 14C yr BP; most sites, within a range of different environmental settings, recording a shift to more xeric biome types. There is an expansion of steppe and cool mixed-forest biomes, replacing tropical dry forest and cool grassland,shrub biomes, respectively. These changes in biome assignments from the modern situation can be interpreted as a biotic response to mid-Holocene climatic aridity. At 3000 14C yr BP the shift is mainly to biomes characteristic of slightly more mesic environmental conditions. There are a number of sites that do not change biome assignment relative to the modern reconstruction, although the affinities that these sites have to a specific biome do change. These ,anomalies' are interpreted on a site-by-site basis. Spatially constant, but differential response of the vegetation to climatic shifts are related to changes in moisture sources and the importance of edaphic controls on the vegetation. The Late Quaternary reconstruction of large-scale vegetation dynamics in Colombia allows an understanding of the environmental controls on these to be developed. In particular, shifts in the character of the main climatic systems that influence Colombian vegetation are described. Copyright © 2002 John Wiley & Sons, Ltd. [source] The role of tropical dry forest as a long-term barrier to dispersal: a comparative phylogeographical analysis of dry forest tolerant and intolerant frogsMOLECULAR ECOLOGY, Issue 22 2007ANDREW J. CRAWFORD Abstract We used a comparative phylogeographical approach to investigate the origins of the disjunct wet forest biota of the Golfo Dulce region along the Pacific slope of Costa Rica. This region is isolated by Pacific dry forests north and south and isolated from Caribbean wet forests by mountains. We studied three sympatric lowland frog species in the Craugastor fitzingeri species group that prefer wet forest but differ in their response to dry habitats. In dry forest, C. fitzingeri can survive along streams while C. crassidigitus and C. talamancae are entirely absent. We collected samples from across the ranges of all three species, and obtained mitochondrial DNA sequence data from the COI and cytochrome b genes. We observed significant phylogeographical structure in C. crassidigitus and C. talamancae, but much less in C. fitzingeri, demonstrating that mountain barriers and dry forest habitat have reduced mitochondrial gene flow in the strictly wet-forest species. Additionally, we discovered that the Golfo Dulce and Central Panama populations of C. crassidigitus appear to have diverged in the Pliocene or earlier, suggesting that the dry forest separating these populations is old. Our phylogenetic analysis of 12 of approximately 16 species of the C. fitzingeri species group suggests that the three lowland species are each other's closest relatives. Because of this shared phylogenetic history, we attribute the striking differences in phylogeographical structure to the different ecologies of the frogs. In summary, we find that what appear to be minor differences in the natural history of these three closely related species may profoundly impact the potential for dispersal, range size, and cladogenesis. [source] Partitioning nuclear and chloroplast variation at multiple spatial scales in the neotropical epiphytic orchid, Laelia rubescensMOLECULAR ECOLOGY, Issue 9 2004DORSET W. TRAPNELL Abstract Insights into processes that lead to the distribution of genetic variation within plant species require recognition of the importance of both pollen and seed movement. Here we investigate the contributions of pollen and seed movement to overall gene flow in the Central American epiphytic orchid, Laelia rubescens. Genetic diversity and structure were examined at multiple spatial scales in the tropical dry forest of Costa Rica using nuclear (allozymes) and chloroplast restriction fragment length polymorphism (RFLP) markers, which were found to be diverse (allozymes, P = 73.3%; HE = 0.174; cpDNA, HE = 0.741). Nuclear genetic structure (FSTn) was low at every spatial scale (0.005,0.091). Chloroplast markers displayed more structure (0.073,0.254) but relatively similar patterns. Neither genome displayed significant isolation-by-distance. Pollen and seed dispersal rates did not differ significantly from one another (mp/ms = 1.40) at the broadest geographical scale, among sites throughout Costa Rica. However, relative contributions of pollen and seeds to gene flow were scale-dependent, with different mechanisms determining the dominant mode of gene flow at different spatial scales. Much seed dispersal is highly localized within the maternal population, while some seeds enter the air column and are dispersed over considerable distances. At the intermediate scale (10s to 100s of metres) pollinators are responsible for substantial pollen flow. This species appears capable of distributing its genes across the anthropogenically altered landscape that now characterizes its Costa Rican dry forest habitat. [source] Water relations of baobab trees (Adansonia spp.PLANT CELL & ENVIRONMENT, Issue 6 2006L.) during the rainy season: does stem water buffer daily water deficits? ABSTRACT Baobab trees are often cited in the literature as water-storing trees, yet few studies have examined this assumption. We assessed the role of stored water in buffering daily water deficits in two species of baobabs (Adansonia rubrostipa Jum. and H. Perrier and Adansonia za Baill.) in a tropical dry forest in Madagascar. We found no lag in the daily onset of sap flow between the base and the crown of the tree. Some night-time sap flow occurred, but this was more consistent with a pattern of seasonal stem water replenishment than with diurnal usage. Intrinsic capacitance of both leaf and stem tissue (0.07,0.08 and 1.1,1.43 MPa,1, respectively) was high, yet the amount of water that could be withdrawn before turgor loss was small because midday leaf and stem water potentials (WPs) were near the turgor-loss points. Stomatal conductance was high in the daytime but then declined rapidly, suggesting an embolism-avoidance strategy. Although the xylem of distal branches was relatively vulnerable to cavitation (P50: 1.1,1.7 MPa), tight stomatal control and minimum WPs near ,1.0 MPa maintained native embolism levels at 30,65%. Stem morphology and anatomy restrict water movement between storage tissues and the conductive pathway, making stored-water usage more appropriate to longer-term water deficits than as a buffer against daily water deficits. [source] Diet of spider monkeys (Ateles geoffroyi) in Mesoamerica: current knowledge and future directionsAMERICAN JOURNAL OF PRIMATOLOGY, Issue 1 2009Arturo González-Zamora Abstract Here we review all published articles and book chapters, as well as unpublished theses and data of Ateles geoffroyi diet to (1) summarize the literature; (2) synthesize general feeding patterns; (3) document plant taxonomic similarity in diet across study sites; and (4) suggest directions for future research and conservation priorities. We found 22 samples from five countries: Mexico, Guatemala, El Salvador, Costa Rica and Panama. Tropical wet forest is the most studied habitat (N=13 samples), followed by tropical dry forest (6) and tropical moist forest (3). Most samples have been carried out in large protected forests. In spite of showing an overall high dietetic diversity (364 species, 76 families), A. geoffroyi concentrated the majority of feeding time on a few species in the families Moraceae and Fabaceae. At all study sites fruits were the most common food item in the diet followed by leaves. Furthermore, a greater variety of food items and less fruit were consumed in forest fragments. These findings suggest that fruit shortage in fragments results in primates using foods of presumably lower energetic content such as leaves. Similarity in diet was higher among groups geographically closer to each other than among distant groups, showing that the floristic and phenological characteristics of the forest can influence diet composition. We conclude that several years of data are required to fully describe the dietary list of A. geoffroyi at any one site, as studies of the same group over different years shared as little as 56% of species. As most populations of A. geoffroyi live in highly fragmented landscapes, it is crucial to carry out studies in these areas to evaluate (1) changes in diet and activity patterns that may negatively affect survival; and (2) habitat attributes that may favor their persistence in altered landscapes. Am. J. Primatol. 71:8,20, 2009. © 2008 Wiley-Liss, Inc. [source] Male Body Size and Mating Success and Their Relation to Larval Host Plant History in the Moth Rothschildia lebeau in Costa Rican Dry ForestBIOTROPICA, Issue 2 2010Salvatore J. Agosta ABSTRACT The moth Rothschildia lebeau uses three tree species as its primary larval hosts in the tropical dry forest of northwestern Costa Rica. These hosts were shown previously to have different relative effects on caterpillar performance, resulting in an apparent host-related life history trade-off between large adult body size on the one hand but low offspring survival on the other. To further assess the potential ecological and evolutionary importance of this trade-off, an observational field study of the relationship between male body size and mating success was conducted. Across mating trials, larger males had a higher probability of being observed mating. Independent of the effect of size, the amount of wing damage an individual had sustained (a measure of relative age) was negatively correlated with the probability a male was observed mating. Within mating trials, the mated male tended to be larger than the average unmated male, but there was no difference in wing damage. Overall, results of this study were consistent with a positive effect of male body size on mating success, consistent with the idea that larval host plant history and its effects on adult body size matters in terms of adult male fitness. However, all sized males were observed mating over the course of the study, and the size advantage did not appear to be particularly strong. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp [source] Flying Foxes Prefer to Forage in Farmland in a Tropical Dry Forest Landscape Mosaic in FijiBIOTROPICA, Issue 2 2010Article first published online: 29 SEP 200, Matthew Scott Luskin ABSTRACT To test flying fox adaptations to a habitat mosaic with extreme deforestation, the abundance, habitat choice and feeding behavior of the Pacific flying fox, Pteropus tonganus, were investigated across 16 islands of the Yasawa archipelago, Fiji. The habitat mosaic is formed by 4.3 percent tropical dry forest and 3.3 percent farmland, leaving exotic grasslands and stands of Leucaena leucocephala to overrun the vast majority of land. Pteropus tonganus abundance was high (5757 bats) despite deforestation and hunting. Roosting sites were restricted to native forest fragments. Grasslands and stands of L. leucocephala were completely void of bats at all times. The mean foraging density in farmland was four times higher than in forests and foraging competition was routinely observed in farmland but was extremely rare in forests. The author suggests that during the study, extensive foraging in farmland was supporting the high P. tonganus population. Additionally, the preferential foraging in farmland was responsible for the low foraging densities within forests and dramatically less intraspecies competition for forest resources. Further research is needed on seed dispersal within forests and to test for seasonal variations in bat abundance and feeding. [source] Nesting Habitat of the Lilac-crowned Parrot in a Modified Landscape in MexicoBIOTROPICA, Issue 3 2009Tiberio C. Monterrubio-Rico ABSTRACT Parrot populations are being increasingly pressured to occupy modified or fragmented landscapes, yet little is known of the habitat requirements of most species, particularly with regard to the effects on breeding habitat. We evaluated nesting habitat of the lilac-crowned parrot Amazona finschi in the modified landscape of coastal Michoacan in Mexico. We located 90 parrot nests in 12 tree species in Michoacan, with lilac-crowned parrots presenting a narrow niche-breadth of tree species used for nesting. Considering an additional 82 nest trees recorded for lilac-crowned parrots in Jalisco, we determined a 51 percent similarity in cavity resource use by parrots in the two dry forest regions. Overall, the predominant nest tree species with 76 percent of nests were Astronium graveolens, Piranhea mexicana, Brosimum alicastrum, and Tabebuia spp., all characteristic of semi-deciduous forest. Only 8 percent of nests occurred in trees characteristic of deciduous forest. Parrots utilized large trees with canopy level cavities as nest sites, and preferred conserved semi-deciduous forest for nesting, with fewer nests than expected in deciduous forest and transformed agricultural land. Nest areas in semi-deciduous forest occurred on significantly steeper terrain, as remnant semi-deciduous forest is restricted to steep ridges and canyons. Those parrot nests in modified habitats and forest patches were located near to continuous forest, with nest trees in open agricultural land being significantly closer to continuous forest than nests in disturbed forest patches. These results demonstrate the importance of conserved semi-deciduous forest as breeding habitat for the threatened, endemic lilac-crowned parrot, making wild populations of the species vulnerable to the high rate of transformation and fragmentation of tropical dry forest. RESUMEN Las poblaciones de Psitácidos están siendo presionadas a ocupar paisajes modificados, sin embargo poco se conoce sobre los requerimientos de hábitat para la mayoría de las especies, particularmente con respecto a los efectos sobre sus hábitats de anidación. Evaluamos el hábitat de anidación del loro corona lila (Amazona finschi) en el paisaje modificado de la costa de Michoacán en México. Localizamos 90 sitios de anidación en 12 especies de árboles en Michoacan, encontrando que el loro corona lila presentó una estrecha amplitud de nicho en el uso de especies de árboles para anidar. Considerando un adicional 82 árboles-nido del loro corona lila en Jalisco, determinamos un 51% de similitud en utilización del recurso de cavidades por los loros en los dos regiones de bosque seco. Los árboles claves, con 76% de los nidos, fueron Astronium graveolens, Piranhea mexicana, Brosimum alicastrum, y Tabebuia spp., todos característicos del bosque subcaducifolio. Solo 8% de los nidos se encontraron en arboles características del bosque caducifolio. Los loros utilizaron árboles grandes con cavidades en el dosel como sitios de anidación, y prefirieron el bosque subcaducifolio conservado para anidar, con un menor número de nidos que lo esperado en el bosque caducifolio y tierras agropecuarias. Las áreas de anidación en bosque subcaducifolio ocurrieron sobre pendientes significativamente más inclinadas, ya que los remanentes de este tipo de vegetación están actualmente restringidos a pendientes inclinadas y cañadas. Aquellos nidos en hábitats modificados y parches pequeños de vegetación se localizaron cerca de áreas de bosque continuo, con los árboles-nido que ocurrieron en terrenos agropecuarios significativamente más cerca de los bosques continuos, que los que ocurrieron en fragmentos de bosques perturbados. Estos resultados destacan la importancia del bosque subcaducifolio conservado como hábitat de anidación para esta especie de loro endémico y amenazado, haciendo a sus poblaciones silvestres vulnerables al alto nivel de transformación y fragmentación del bosque tropical seco. [source] Carrying Capacity and Potential Production of Ungulates for Human Use in a Mexican Tropical Dry ForestBIOTROPICA, Issue 4 2007Salvador Mandujano ABSTRACT Data are provided on the carrying capacity and potential production for sustainable human use of white-tailed deer (Odocoileus virginianus) and collared peccary (Pecari tajacu) in a protected tropical dry forest at Chamela on the Pacific coast of Mexico. In this paper, the carrying capacity was defined as the equilibrium density plus the number of animals removed by predators. The equilibrium point was estimated from the density dependent relationship between the finite population growth rate and the current density according to a logistic model. Annual density was estimated using the line transect method. Carrying capacity estimates were 16.5 to 17.2 deer/km2 and 9.3,9.5 peccaries/km2, representing a combined biomass of 841,874 kg/km2. A potential production for human use of 2.1 deer/km2 and 4.4 peccaries/km2 was estimated employing the model of Robinson and Redford (1991). The data suggest that, in the protected tropical dry forest of Chamela, the density and biomass of wild ungulates can maintain a similar or greater density and biomass than other Neotropical forests. To obtain an accurate estimation of the maximum sustainable yield (MSY), it is necessary to consider predation. From a management point of view, it is important to consider that carrying capacity varies as a function of the rainfall pattern. RESUMEN Se presentan datos acerca de la capacidad de carga y la producción potencial del venado cola blanca (Odocoileus virginianus) y pecarí de collar (Pecari tajacu) para aprovechamiento humano en un bosque tropical seco de Chamela en la costa Pacífica de México. En este trabajo se definió capacidad de carga como la densidad en el punto de equilibrio del crecimiento poblacional más el número de animales removidos por los depredadores. La densidad en equilibrio se estimó a partir de la relación de denso-dependencia entre la tasa finita de crecimiento poblacional y la densidad anual de acuerdo al modelo logístico. La densidad anual se estimó empleando el método de transecto de línea. La capacidad de carga se estimó en 16.5 a 17.2 venados/km2 y 9.3 a 9.5 pecaries/km2, y una biomasa combinada de 841 a 874 kg/km2. Empleando el modelo de Robinson y Redford (1991) se estimó una producción potencial para aprovechamiento humano de 2.1 venados/km2 y 4.4 pecaries/km2. Los datos indican que en bosque tropical seco protegido de Chamela la densidad y biomasa de los ungulados silvestres puede ser similar o mayor en comparación con otros bosques neotropicales. Para obtener una estimación precisa de la cosecha máxima sostenible es importante considerar el efecto de la depredación. Desde una perspectiva de manejo, se debe incorporar la variación en la capacidad de carga en función del patrón de lluvias. [source] Responses to Fire in Selected Tropical Dry Forest Trees,BIOTROPICA, Issue 5 2006Sarah M. Otterstrom ABSTRACT Fire is a frequent disturbance in the tropical dry forests of Central America, yet very little is known about how native species respond to such events. We conducted an experimental burn in a tropical dry forest of western Nicaragua to evaluate plant responses to fire with respect to survivorship and recruitment. Measurements of woody vegetation of all size classes were carried out prior to the prescribed burn and three successive years post fire. We selected the 15 most abundant species <10 cm DBH to assess percent survivorship and sprouting responses post fire. Changes in seedling densities for these 15 most abundant species and the 15 least abundant species were analyzed using a repeated measure ANOVA. We also assessed changes in seedling densities for three species of international conservation concern. We found three major fire-coping strategies among common dry forests plants: resisters (low fire-induced mortality), resprouters (vigorous sprouting), and recruiters (increased seeding post-fire). While survivorship was generally high relative to tropical moist forest species, those species with lower survivorship used either seeding or sprouting as an alternative strategy for persisting in the forest community. Seed dispersal mechanisms, particularly wind dispersal, appear to be an important factor in recruitment success post-fire. Burn treatment led to a significant increase in the density of seedlings for two species of conservation concern: Guaiacum sanctum and Swietenia humilis. Results of this study suggest that common dry forest species in western Nicaragua are fire tolerant. Further study of individual species and their fire responses is merited. RESUMEN El incendio forestal causa perturbación frecuente en los bosques secos tropicales de Centroamérica, sin embargo se conoce poco del comportamiento de las especies nativas a ésta perturbación. Nosotros llevamos a acabo una quema experimental en un bosque seco tropical de Nicaragua occidental para evaluar el comportamiento de la flora con respecto a la sobrevivencia y reclutamiento de las especies después de la quema. Se midió todas las clases diamétricas de la vegetación leñosa antes de la quema controlada y durante 3 años consecutivos después de la quema. Seleccionamos las 15 especies más abundantes en la clase diametrica <10 dap para evaluar el porcentaje de sobrevivencia y la actividad de rebrote después de la quema. Cambios en la densidad de plántulas para las 15 especies más abundantes y para las 15 especies menos abundantes fueron analizadas utilizando el análisis de varianza de medición repetido (ANOVA). También, evaluamos cambios en la densidad de plántulas para tres especies de interés a nivel internacional con respecto a su conservación. En la flora común del bosque seco se encontró tres estrategias principales utilizadas por las especies para contender con los incendios forestales, estas fueron: resistores (baja mortalidad por el incendio), rebrotadores (rebrotamiento vigoroso), y reclutores (reclutamiento elevado pos-incendio). Mientras la sobrevivencia de especies en el bosque seco en general fue relativamente alta a la de especies de bosque húmedo tropical, las especies con menor sobrevivencia utilizaron el reclutamiento ó rebrotamiento como estrategia para persistir en la comunidad boscosa. El mecanismo de dispersión de semilla, particularmente la dispersión eólica, parece ser un factor importante en el éxito de reclutamiento después de la quema. Las quemas controladas produjeron un aumento significativo en la densidad de plántulas para dos de las especies de interés para la conservación: Guaiacum sanctum L. (Zygophyllaceae) y Swietenia humilis Zucc. (Meliaceae). Resultados de esta investigación sugieren que las especies comunes del bosque seco de Nicaragua son tolerantes al fuego. Por lo tanto, es merecido hacer más estudios de estas especies y su comportamiento ante la perturbación del fuego. [source] Research Priorities for Neotropical Dry Forests,BIOTROPICA, Issue 4 2005G. Arturo Sánchez-Azofeifa ABSTRACT Our understanding of the human and biophysical dimensions of tropical dry forest change and its cumulative effects is still in the early stages of academic discovery. The papers in this special section on Neotropical dry forests cover a wide range of sites and problems ranging from the use of multispectral and hyperspectral remote sensing platforms to the impact of hurricanes on tropical dry forest regeneration. Here, we present to the scientific community the results of a workshop on which research priorities for tropical dry forests were discussed. This discussion focuses on the need to develop linkages between remote sensing, ecological, and social science research. The incorporation of social sciences into ecological research could contribute dramatically to our understandings of tropical dry forests by providing important contextual information to ecologists, and by helping to develop an important science,policy,public nexus on which environmental management can succeed. RESUMEN El conocimiento actual de las dimensiones humanas y biofísicas de los cambios en los bosque secos tropicales y sus efectos acumulativos esta en las etapas iniciales del descubrimiento académico. En este articulo, introducimos una serie de artículos científicos asociados a este número especial sobre bosques secos en los Neotropicos. Estos artículos provienen de una distribución muy variada de sitios en las Américas y van desde las aplicaciones de sensores multi- e hiperspectrales, hasta el estudio del efecto que los huracanes causan en la regeneración de los bosques secos. Presentamos a la comunidad científica los resultados de un taller dirigido a la discusión de aquellas prioridades de investigación en bosques secos. La discusión se enfoca a lo largo de los vínculos que se necesitan entre percepción remota, ecología y ciencias sociales. La incorporación las ciencias sociales dentro de la investigación ecológica podría contribuir dramáticamente al entendimiento de los bosque secos tropicales, así como tienen len a posibilidad de ayudar en el desarrollo de vínculos importantes entre ciencia y política dirigida al manejo de los recursos presentes en este importante ecosistema. [source] Phyllostomid Bat Community Structure and Abundance in Two Contrasting Tropical Dry Forests,BIOTROPICA, Issue 4 2005Kathryn E. Stoner ABSTRACT Although tropical wet forests are generally more diverse than dry forests for many faunal groups, few studies have compared bat diversity among dry forests. I compared ground level phyllostomid bat community structure between two tropical dry forests with different precipitation regimes. Parque National Palo Verde in northwestern Costa Rica represents one of the wettest tropical dry forests (rainfall 1.5 m/yr), whereas the Chamela-Cuixmala Biosphere Reserve on the Pacific coast of central Mexico represents one of the driest (750 mm/yr). Mist net sampling was conducted at the two study sites to compare changes in ground level phyllostomid bat community structure between regions and seasons. Palo Verde was more diverse than Chamela and phyllostomid species showed low similarity between sites (Classic Jaccard = 0.263). The distinct phyllostomid communities observed at these two dry forest sites demonstrates that variants of tropical dry forest can be sufficiently different in structure and composition to affect phyllostomid communities. At both dry forest sites, abundance of the two most common foraging guilds (frugivores and nectarivores) differed between seasons, with greatest numbers of individuals captured coinciding with highest chiropterophilic resource abundance. RESUMEN A pesar de que los bosques tropicales húmedos, en general, son más diversos que los bosques tropicales secos para muchos grupos de fauna, pocos estudios han comparado la diversidad de murciélogos en los bosques tropicales secos. El presente estudio compara la estructura de la comunidad de los murciélagos filostómidos a nivel del suelo entre dos tipos de bosque tropical seco con diferentes regimenes de precipitación. El parque Nacional Palo Verde esta localizado en el Noroeste de Costa Rica y representa uno de los bosques tropicales secos mas húmedos (con una precipitación de 1.5 m/año), mientras que la Reserva de la Biosfera Chamela-Cuixmala esta localizada en la costa oeste del pacífico de México y representa uno de los bosques más secos (750 mm/año). Se realizó un muestreo con redes de niebla en los dos sitios para comparar los cambios en la estructura de la comunidad de murciélagos filostómidos a nivel de suelo. Palo Verde fue más diverso que Chamela y se encontró la simultud de las especies filostomidos entre los dos sitio fue bajo (Classic Jaccard = 0.263). Las comunidades distintas de filostomidos observado en estos dos sitios de bosque seco demuestra que las variantes en el bosque tropical seco pueden ser suficientemente diferentes en estructura y composición para poder afectar la comunidad de filostomidos. En ambos bosques secos la abundancia de lo dos gremios tróficos más comunes (frugívoros y nectarívoros) fue diferente en las estaciones, con un mayor número de individuos capturados coincidiendo con una mayor abundancia de recursos quiropterofílicos. [source] Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approachesFUNCTIONAL ECOLOGY, Issue 4 2010Jennifer S. Powers Summary 1.,One way to simplify the high taxonomic diversity of plant species in vegetation models is to place species into groups based on shared, dominant traits. Many studies have suggested that morphological and physiological traits of tropical dry forest tree species vary with leaf habit (i.e. leaves from evergreen, deciduous or semi-deciduous species) and thus this characteristic may serve as a useful way to distinguish ecologically meaningful functional types. 2.,In this study we examine whether 10 plant traits vary with leaf habit in replicated leaves and individual trees of 87 species from a tropical dry forest in Costa Rica. We also looked for evidence of phylogenetic conservatism, i.e. closely related species sharing similar trait values compared to more distantly related taxa. 3.,While some of the traits varied within and among individual trees of the same species, interspecific variation accounted for 57,83% of the variance among samples. Four traits in addition to leaf habit showed evidence of phylogenetic conservatism, but these results were strongly dependent on the inclusion of the 18 species of legumes (Fabaceae) in our dataset. Contrary to our predictions, none of the traits we measured differed among leaf habits. However, five traits (wood density, leaf C, leaf N, N/P and C/N) varied significantly between legumes and other functional types. Furthermore, when all high-nitrogen non-legume taxa were compared to the high-nitrogen legumes, six traits excluding leaf N differed significantly, indicating that legumes are functionally different from other tree species beyond high N concentrations. Similarly, the 18 legume taxa (which all have compound leaves) also differed from other compound-leaved species for six traits, thus leaf type does not explain these patterns. 4.,Our main conclusions are that (i) a plant functional type classification based on leaf habit alone has little utility in the tropical dry forest we studied, and (ii) legumes have a different suite of traits including high leaf carbon and wood density in addition to high leaf nitrogen. Whether this result generalizes to other tropical forests is unknown, but merits future research due to the consequences of these traits for carbon storage and ecosystem processes. [source] Feedbacks between phosphorus deposition and canopy cover: The emergence of multiple stable states in tropical dry forestsGLOBAL CHANGE BIOLOGY, Issue 1 2008MARCIA DeLONGE Abstract Dry forests represent a large percentage of tropical forests and are vulnerable to both anthropogenic and natural disturbances, yet important aspects of their sensitivity to disruption remain poorly understood. It is particularly unclear how changes in land-use or tropical storm patterns may affect the resiliency of phosphorus (P)-limited neotropical forests. In these systems, vegetation is sustained in the long-term by atmospheric P-inputs through rainfall, dust, or fog. Past research supports the idea that dust and fog deposition are dependent on canopy density (e.g. leaf area index). Thus, the canopy may function as a ,trap' for P, enabling a positive feedback between vegetation and P-deposition. We developed a conceptual model to investigate how Neotropical vegetation may respond to reduced P-deposition due to canopy losses. The model suggests that a canopy-deposition feedback may induce bistable vegetation dynamics; under some conditions, forests may be unable to naturally recover from relatively small disturbances. [source] Predicting and quantifying the structure of tropical dry forests in South Florida and the Neotropics using spaceborne imageryGLOBAL ECOLOGY, Issue 3 2006Thomas W. Gillespie ABSTRACT Aim, This research examines environmental theories and remote sensing methods that have been hypothesized to be associated with tropical dry forest structure. Location, Tropical dry forests of South Florida and the Neotropics. Methods, Field measurements of stand density, basal area and tree height were collected from 22 stands in South Florida and 30 stands in the Neotropics. In South Florida, field measurements were compared to climatic (temperature, precipitation, hurricane disturbance) and edaphic (rockiness, soil depth) variables, spectral indices (NDVI, IRI, MIRI) from Landsat 7 ETM+, and estimates of tree height from the Shuttle Radar Topography Mission (SRTM) and the National Elevation Dataset (NED). Environmental variables associated with tropical dry forest structure in South Florida were compared to tropical dry forest in other Neotropical sites. Results, There were significant correlations among temperature and precipitation, and stand density and tree height in South Florida. There were significant correlations between (i) stand density and mean NDVI and standard deviation of NDVI, (ii) MIRI and stand density, basal area and mean tree height, and (iii) estimates of tree height from SRTM with maximum tree height. In the Neotropics, there were no relationships between temperature or precipitation and tropical dry forest structure, however, Neotropical sites that experience hurricane disturbance had significantly shorter tree heights and higher stand densities. Main conclusions, It is possible to predict and quantify the forest structure characteristics of tropical dry forests using climatic data, Landsat 7 ETM+ imagery and SRTM data in South Florida. However, results based on climatic data are region-specific and not necessarily transferable between tropical dry forests at a continental spatial scale. Spectral indices from Landsat 7 ETM+ can be used to quantify forest structure characteristics, but SRTM data are currently not transferable to other regions. Hurricane disturbance has a significant impact on forest structure in the Neotropics. [source] Vegetation patterns and environmental gradients in tropical dry forests of the northern Yucatan PeninsulaJOURNAL OF VEGETATION SCIENCE, Issue 2 2004D.A. White Patterns of plant species composition and their relationships to soil and topographic variables were investigated in tropical dry forests across the north central Yucatan, Mexico. Seven sites were studied in the oldest accessible forests along a 200,km transect oriented northwest to southeast; an eighth site was located in a little-disturbed area located 75 km northeast of the transect. Two of the sites were on Mayan ruins. All sites were sampled using 9,24, 10m × 20m plots ( Water vapour isotopic exchange by epiphytic bromeliads in tropical dry forests reflects niche differentiation and climatic signalsPLANT CELL & ENVIRONMENT, Issue 6 2008CASANDRA REYES-GARCÍA ABSTRACT The 18O signals in leaf water (,18Olw) and organic material were dominated by atmospheric water vapour 18O signals (,18Ovap) in tank and atmospheric life forms of epiphytic bromeliads with crassulacean acid metabolism (CAM), from a seasonally dry forest in Mexico. Under field conditions, the mean ,18Olw for all species was constant during the course of the day and systematically increased from wet to dry seasons (from 0 to +6,), when relative water content (RWC) diminished from 70 to 30%. In the greenhouse, progressive enrichment from base to leaf tip was observed at low night-time humidity; under high humidity, the leaf tip equilibrated faster with ,18Ovap than the other leaf sections. Laboratory manipulations using an isotopically depleted water source showed that ,18Ovap was more rapidly incorporated than liquid water. Our data were consistent with a Craig,Gordon (C-G) model as modified by Helliker and Griffiths predicting that the influx and exchange of ,18Ovap control ,18Olw in certain epiphytic life forms, despite progressive tissue water loss. We use ,18Olw signals to define water-use strategies for the coexisting species which are consistent with habitat preference under natural conditions and life form. Bulk organic matter (,18Oorg) is used to predict the ,18Ovap signal at the time of leaf expansion. [source] Leaf Water Repellency as an Adaptation to Tropical Montane Cloud Forest EnvironmentsBIOTROPICA, Issue 6 2007Curtis D. Holder ABSTRACT Adaptations that reduce water retention on leaf surfaces may increase photosynthetic capacity of cloud forests because carbon dioxide diffuses slower in water than air. Leaf water repellency was examined in three distinct ecosystems to test the hypothesis that tropical montane cloud forest species have a higher degree of leaf water repellency than species from tropical dry forests and species from temperate foothills-grassland vegetation. Leaf water repellency was measured by calculating the contact angle of the leaf surface and the line tangent to a water droplet through the point of contact on the adaxial and the abaxial surface. Leaf water repellency was significantly different between the three study areas. The hypothesis that leaf water repellency is higher in cloud forest species than tropical dry forests and temperate foothills-grassland vegetation was not confirmed in this study. Leaf water repellency was lower for cloud forest species (adaxial surface = 50.8°; abaxial surface = 82.9°) than tropical dry forest species (adaxial surface = 74.5°; abaxial surface = 87.3°) and temperate foothills-grassland species (adaxial surface = 77.6°; abaxial surface = 95.8°). The low values of leaf water repellency in cloud forest species may be influenced by presence of epiphylls and loss of epicuticular wax on the leaf surfaces. [source] Responses to Fire in Selected Tropical Dry Forest Trees,BIOTROPICA, Issue 5 2006Sarah M. Otterstrom ABSTRACT Fire is a frequent disturbance in the tropical dry forests of Central America, yet very little is known about how native species respond to such events. We conducted an experimental burn in a tropical dry forest of western Nicaragua to evaluate plant responses to fire with respect to survivorship and recruitment. Measurements of woody vegetation of all size classes were carried out prior to the prescribed burn and three successive years post fire. We selected the 15 most abundant species <10 cm DBH to assess percent survivorship and sprouting responses post fire. Changes in seedling densities for these 15 most abundant species and the 15 least abundant species were analyzed using a repeated measure ANOVA. We also assessed changes in seedling densities for three species of international conservation concern. We found three major fire-coping strategies among common dry forests plants: resisters (low fire-induced mortality), resprouters (vigorous sprouting), and recruiters (increased seeding post-fire). While survivorship was generally high relative to tropical moist forest species, those species with lower survivorship used either seeding or sprouting as an alternative strategy for persisting in the forest community. Seed dispersal mechanisms, particularly wind dispersal, appear to be an important factor in recruitment success post-fire. Burn treatment led to a significant increase in the density of seedlings for two species of conservation concern: Guaiacum sanctum and Swietenia humilis. Results of this study suggest that common dry forest species in western Nicaragua are fire tolerant. Further study of individual species and their fire responses is merited. RESUMEN El incendio forestal causa perturbación frecuente en los bosques secos tropicales de Centroamérica, sin embargo se conoce poco del comportamiento de las especies nativas a ésta perturbación. Nosotros llevamos a acabo una quema experimental en un bosque seco tropical de Nicaragua occidental para evaluar el comportamiento de la flora con respecto a la sobrevivencia y reclutamiento de las especies después de la quema. Se midió todas las clases diamétricas de la vegetación leñosa antes de la quema controlada y durante 3 años consecutivos después de la quema. Seleccionamos las 15 especies más abundantes en la clase diametrica <10 dap para evaluar el porcentaje de sobrevivencia y la actividad de rebrote después de la quema. Cambios en la densidad de plántulas para las 15 especies más abundantes y para las 15 especies menos abundantes fueron analizadas utilizando el análisis de varianza de medición repetido (ANOVA). También, evaluamos cambios en la densidad de plántulas para tres especies de interés a nivel internacional con respecto a su conservación. En la flora común del bosque seco se encontró tres estrategias principales utilizadas por las especies para contender con los incendios forestales, estas fueron: resistores (baja mortalidad por el incendio), rebrotadores (rebrotamiento vigoroso), y reclutores (reclutamiento elevado pos-incendio). Mientras la sobrevivencia de especies en el bosque seco en general fue relativamente alta a la de especies de bosque húmedo tropical, las especies con menor sobrevivencia utilizaron el reclutamiento ó rebrotamiento como estrategia para persistir en la comunidad boscosa. El mecanismo de dispersión de semilla, particularmente la dispersión eólica, parece ser un factor importante en el éxito de reclutamiento después de la quema. Las quemas controladas produjeron un aumento significativo en la densidad de plántulas para dos de las especies de interés para la conservación: Guaiacum sanctum L. (Zygophyllaceae) y Swietenia humilis Zucc. (Meliaceae). Resultados de esta investigación sugieren que las especies comunes del bosque seco de Nicaragua son tolerantes al fuego. Por lo tanto, es merecido hacer más estudios de estas especies y su comportamiento ante la perturbación del fuego. [source]
| |