Home About us Contact | |||
Total Thiols (total + thiol)
Selected AbstractsProtective effects of cysteine, methionine and vitamin C on the stomach in chronically alcohol treated ratsJOURNAL OF APPLIED TOXICOLOGY, Issue 5 2008Ramazan Amanvermez Abstract A chronic intake of high dose alcohol may cause oxidative stress and inflammation in the stomach. It is hypothesized that cysteine-methionine and vitamin C may neutralize harmful compounds while potentiating the antioxidant capacity of the cell or tissue. The experimental animals were fed regular diets and were maintained for 90 days in the control group, the alcoholic group, which was given 2.5 g of 50% ethanol kg,1 body wt. administered intragastrically every other day, or the alcoholic with antioxidant supplement group, to whom 2.5 g of 50% ethanol kg,1 body wt. + a solution that contained 200 mg vitamin C, 100 mg cysteine and 100 mg methionine was administered intragastrically every other day. After the treatments, the stomach was taken for pathological and biochemical analysis. The stomach of the alcoholic group rats had higher scores of pathological findings compared with the control group, whereas the scores of the antioxidant-supplemented group were lower than the alcoholic group. In addition, the oxidized protein and lipid content in the stomachs of the alcoholic group were significantly higher than the control, but antioxidant supplementation lowered the amount of oxidation in the antioxidant supplemented group. The amount of stomach glutathione in the alcoholic group was higher than that of the control and antioxidant-supplemented groups. Interestingly, the level of total thiol in the stomach tissue of rats with antioxidant supplement was statistically higher than that of the control and alcoholic groups. In conclusion, the scores of the pathological findings in the stomach of rats with the antioxidant supplement were lower than the chronic alcohol-treated rats, albeit the amount of total thiol was increased in this group. Moreover, chronic alcohol treatment led to an increase in the level of lipid and protein oxidation in the stomach tissue of rats. A simultaneous intake of ascorbate/l -cys/l -met along with ethanol attenuated the amount of oxidation which suggested that cysteine-methionine and vitamin C could play a protective role in the stomach against oxidative damage resulting from chronic alcohol ingestion. Copyright © 2007 John Wiley & Sons, Ltd. [source] Effects of antioxidant stobadine on protein carbonylation, advanced oxidation protein products and reductive capacity of liver in streptozotocin-diabetic rats: Role of oxidative/nitrosative stressBIOFACTORS, Issue 3 2007Ahmet Cumao Background: Increased oxidative/nitrosative stress is important in the pathogenesis of diabetic complications, and the protective effects of antioxidants are a topic of intense research. The purpose of this study was to investigate whether a pyridoindole antioxidant stobadine (STB) have a protective effect on tissue oxidative protein damage represented by the parameters such as protein carbonylation (PC), protein thiol (P-SH), total thiol (T-SH) and non-protein thiol (Np-SH), nitrotyrosine (3-NT), and advanced oxidation protein products (AOPP) in streptozotocin-diabetic rats. Methods: Diabetes was induced in male Wistar rats by intraperitonal injection of streptozotocin (55 mg/kg). Some of the non-diabetic (control) and diabetic rats treated with STB (24.7 mg/kg/day) during 16 weeks, and the effects on blood glucose, PC, AOPP, 3-NT, P-SH, T-SH and Np-SH were studied. Biomarkers were assayed by enzyme-linked immunosorbent assay (ELISA) or by colorimetric methods. Results: Administration of stobadine to diabetic animals lowered elevated blood glucose levels by ,16% relative to untreated diabetic rats. Although stobadine decreased blood glucose, poor glycemic control was maintained in stobadine treated diabetic rats during the treatment period. Biochemical analyses of liver proteins showed significant diminution of sulfhydryl groups, P-SH, T-SH, Np-SH, and elevation of carbonyl groups in diabetic animals in comparison to healthy controls. As a biomarker of nitrosative stress, 3-NT levels did not significantly change by diabetes induction or by stobadine treatment when compared to control animals. However, the treatment with stobadine resulted in a significant decrease in PC, AOPP levels and normalized P-SH, T-SH, Np-SH groups in liver of diabetic animals. [source] Protective effect of arjunolic acid against arsenic-induced oxidative stress in mouse brain,JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 1 2008Mahua Sinha Abstract Arsenic, a notoriously poisonous metalloid, is ubiquitous in the environment, and it affects nearly all organ systems of animals including humans. The present study was designed to investigate the preventive role of a triterpenoid saponin, arjunolic acid against arsenic-induced oxidative damage in murine brain. Sodium arsenite was selected as a source of arsenic for this study. The free-radical-scavenging activity and the in vivo antioxidant power of arjunolic acid were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of sodium arsenite at a dose of 10 mg/kg body weight for 2 days significantly decreased the activities of antioxidant enzymes, superoxide dismutase, catalase, glutathione- S -transferase, glutathione reductase and glutathione peroxidase, the level of cellular metabolites, reduced glutathione, total thiols and increased the level of oxidized glutathione. In addition, it enhanced the levels of lipid peroxidation end products and protein carbonyl content. Treatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days prior to arsenic administration almost normalized above indices. Histological findings due to arsenic intoxication and arjunolic acid treatment supported the other biochemical changes in murine brains. Results of 2,2-diphenyl-1-picryl hydrazyl radical scavenging and ferric reducing/antioxidant power assays clearly showed the in vitro radical scavenging as well as the in vivo antioxidant power of arjunolic acid, respectively. The effect of a well-established antioxidant, vitamin C, has been included in the study as a positive control. Combining all, results suggest that arjunolic acid possessed the ability to ameliorate arsenic-induced oxidative insult in murine brain and is probably due to its antioxidant activity. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:15,26, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20209 [source] Galactosamine-induced hepatotoxic effect and hepatoprotective role of a protein isolated from the herb Cajanus indicus L in vivo,JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 1 2007Prasenjit Manna Abstract dd(+)-Galactosamine is a well-known experimental hepatotoxin. The present study was conducted to determine the protective role of a 43-kD protein isolated from the leaves of the herb Cajanus indicus L against dd(+)-galactosamine (GalN) induced liver damage in mice. Both preventive and curative effects of the protein have been investigated in the study. The protein was administered intraperitoneally at a dose of 2 mg/kg body weight for 4 days before and after GalN intoxication at a dose of 800 mg/kg body weight for 3 days. The increased activities of serum marker enzymes, alanine aminotransferase, and alkaline phosphatase because of GalN administration, were significantly reduced by the protein treatment. The protein also normalized the altered activities of antioxidant enzymes superoxide dismutase, catalase, glutathione reductase, and glutathione- S -transferase as well as the levels of cellular metabolites, reduced glutathione, glutathione disulfide, and total thiols. In addition, the enhanced hepatic lipid peroxidation because of GalN intoxication was also effectively inhibited by the protein treatment. Results suggest that GalN caused hepatic damages via oxidative insult and that the protein provided protection through its antioxidant mechanism. © 2007 Wiley Periodicals, Inc. J Biochem Mol Toxicol 21:13,23, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20154 [source] Separation and quantification of the cellular thiol pool of pea plants treated with heat, salt and atrazinePHYTOCHEMICAL ANALYSIS, Issue 4 2007Sergei Veselinov Ivanov Abstract A novel procedure for the separation of the cellular thiol pool according to the molecular weight and localization of compounds with sulphydryl groups is presented. This simple and rapid method allows the differentiation of thiols into three major fractions,low molecular weight (LMT, primarily glutathione and free cysteine), protein-bound (TPT) and pellet-bound (PBT, associated with cell walls and broken organelles). Moreover, determination of the ratio between surface (readily reactive) thiols (ATG) and those that are more or less buried in the protein structure (BTG) can be achieved. In intact pea leaves, the amounts of the total thiols (LMT + PBT + TPT) varies from 2.5 to 4.8 µmol/g of fresh material. The data for LMT, PBT and TPT were related to each other in the approximate ratio 1:2:7. Treatments of pea plants with high temperature, salinity and low amounts of atrazine affect these sulphydryl types differently. For a greater understanding of the applicability of this method to physiological research, the main mechanisms leading to alterations in the cellular thiol pool are discussed. Furthermore, it is suggested that the proportion of available to buried thiols (ATG/BTG) in proteins could be used as a convenient marker for stress impacts. Copyright © 2007 John Wiley & Sons, Ltd. [source] Prophylaxis with Centella asiatica confers protection to prepubertal mice against 3-nitropropionic-acid-induced oxidative stress in brainPHYTOTHERAPY RESEARCH, Issue 6 2010George K. Shinomol Abstract While the usage of Centella asiatica (CA) is on the increase worldwide, evidence demonstrating its protective efficacy against neurotoxicants is scarce. Hence the present study aimed to understand the neuroprotective efficacy of a standardized aqueous extract of CA against 3-nitropropionic-acid(3-NPA)-induced oxidative stress in the brain of prepubertal mice. We assessed the degree of oxidative stress in cytoplasm of brain regions of male mice (4,wk- old) given CA prophylaxis (5,mg/kg bw) for 10 days followed by 3-NPA administration (i.p.75,mg/kg bw) on the last 2 days. The neurotoxicant elicited marked oxidative stress in the brain of untreated mice as evident by enhanced malondialdehyde levels, reactive oxygen species (ROS) generation, hydroperoxides and protein carbonyls (a measure of protein oxidation) in striatum and other regions (cortex, cerebellum and hippocampus), while CA prophylaxis completely ameliorated the 3-NPA- induced oxidative stress. Depletion of glutathione (GSH) levels, total thiols, perturbations in antioxidant enzymes and cholinergic enzymes in brain discernible among 3-NPA-treated mice were predominantly restored to normalcy with CA prophylaxis. It is hypothesized that the prophylactic protection offered by CA extract against neurotoxicant exposure may be largely due to its ability to enhance GSH, thiols and antioxidant defenses in the brain of prepubertal mice. Copyright © 2009 John Wiley & Sons, Ltd. [source] |