Home About us Contact | |||
Total Species Richness (total + species_richness)
Selected AbstractsVegetation,environment relationships along El-Salam Canal, EgyptENVIRONMETRICS, Issue 3 2001Mamdouh S. Serag Abstract The bank and open water vegetation along El-Salam Canal in north-eastern Egypt were studied in relation to the prevailing environmental factors. The hypothesis that terresterial and aquatic species would show different downstream patterns of species richness was tested by sampling species composition and environmental variables along 80,km of the canal. Species richness was highest in the first 30,km of the canal. The downstream decrease in species richness exhibits interpretable downstream patterns. Total species richness increased with increasing organic matter in the soil and decreased with both increasing soil and water salinity along the gradient. The indicator species of TWINSPAN analysis are: Azolla filiculoides, Echinochloa stagnina, Eichhornia crassipes and Saccharum spontaneum (cluster I); Ceratophyllum demersum, Ludwigia stolonifera and Typha domingensis (cluster II); Potamogeton pectinatus and Phragmites australis (cluster III); Tamarix nilotica and Suaeda vera (cluster IV). The environmental factors influencing the vegetation clusters were analysed using canonical correspondence analysis ordination (CCA). The water salinity, total nitrogen and total phosphorus appeared to be the most important factors controlling the abundance of aquatic plant distribution along the canal. The shoreline vegetation is mainly controlled by salinity, K+ and organic carbon of the soil. Water analysis indicated that the salinity of the water increases southwards and the minimum salinity of the water (0.78,mS/cm) was recorded at the intake of the canal. The maximum value (7.5,mS/cm) of water salinity was recorded near the Suez Canal. Copyright © 2001 John Wiley & Sons, Ltd. [source] Impacts of Restored Patch Density and Distance from Natural Forests on Colonization SuccessRESTORATION ECOLOGY, Issue 4 2003Hans Jacquemyn Abstract The reduction and fragmentation of forest habitats is expected to have profound effects on plant species diversity as a consequence of the decreased area and increased isolation of the remnant patches. To stop the ongoing process of forest fragmentation, much attention has been given recently to the restoration of forest habitat. The present study investigates restoration possibilities of recently established patches with respect to their geographical isolation. Because seed dispersal events over 100 m are considered to be of long distance, a threshold value of 100 m between recent and old woodland was chosen to define isolation. Total species richness, individual patch species richness, frequency distributions in species occurrences, and patch occupancy patterns of individual species were significantly different among isolated and nonisolated stands. In the short term no high species richness is to be expected in isolated stands. Establishing new forests adjacent to existing woodland ensures higher survival probabilities of existing populations. In the long term, however, the importance of long-distance seed dispersal should not be underestimated because most species showed occasional long-distance seed dispersal. A clear distinction should be made between populations colonizing adjacent patches and patches isolated from old woodland. The colonization of isolated stands may have important effects on the dynamics and diversity of forest networks, and more attention should be directed toward the genetic traits and viability of founding populations in isolated stands. [source] Species richness,environment relationships within coastal sclerophyll and mesophyll vegetation in Ku-ring-gai Chase National Park, New South Wales, AustraliaAUSTRAL ECOLOGY, Issue 4 2003Andrew F. Le Brocque Abstract Patterns in species richness from a wide range of plant communities in Ku-ring-gai Chase National Park, New South Wales, Australia, were examined in relation to a number of environmental variables, including soil physical and chemical characteristics. Total species richness and richness of three growth-form types (trees, shrubs and ground cover) were determined in duplicate 500-m2 quadrats from 50 sites on two geological substrata: Hawkesbury Sandstone and Narrabeen shales and sandstones. Generalized linear models (GLM) were used to determine the amount of variation in species richness that could be significantly explained by the measured environmental variables. Seventy-three per cent of the variation in total species richness was explained by a combination of soil physical and chemical variables and site attributes. The environmental variables explained 24% of the variation in tree species richness, 67% of the variation in shrub species richness and 62% of the variation in ground cover species richness. These results generally support the hypothesis of an environmental influence on patterns in total species richness and richness of shrubs and ground cover species. However, tree species richness was not adequately predicted by any of the measured environmental variables; the present environment exerts little influence on the richness of this growth-form type. Historical factors, such as fire or climatic/environmental conditions at time of germination or seedling establishment, may be important in determining patterns in tree species richness at the local scale. [source] Elevational patterns of frog species richness and endemic richness in the Hengduan Mountains, China: geometric constraints, area and climate effectsECOGRAPHY, Issue 6 2006Cuizhang Fu We studied frog biodiversity along an elevational gradient in the Hengduan Mountains, China. Endemic and non-endemic elevational diversity patterns were examined individually. Competing hypotheses were also tested for these patterns. Species richness of total frogs, endemics and non-endemics peaked at mid-elevations. The peak in endemic species richness was at higher elevations than the maxima of total species richness. Endemic species richness followed the mid-domain model predictions, and showed a nonlinear relationship with temperature. Water and energy were the most important variables in explaining elevational patterns of non-endemic species richness. A suite of interacting climatic and geometric factors best explained total species richness patterns along the elevational gradient. We suggest that the mid-domain effect was an important factor to explain elevational richness patterns, especially in regions with high endemism. [source] Scale dependence of diversity measures in a leaf-litter ant assemblageECOGRAPHY, Issue 2 2004Maurice Leponce A reliable characterization of community diversity and composition, necessary to allow inter-site comparisons and to monitor changes, is especially difficult to reach in speciose invertebrate communities. Spatial components of the sampling design (sampling interval, extent and grain) as well as temporal variations of species density affect the measures of diversity (species richness S, Buzas and Gibson's evenness E and Shannon's heterogeneity H). Our aim was to document the small-scale spatial distribution of leaf litter ants in a subtropical dry forest of the Argentinian Chaco and analyze how the community characterization was best achieved with a minimal sampling effort. The work was based on the recent standardized protocol for collecting ants of the leaf litter ("A.L.L.": 20 samples at intervals of 10 m). To evaluate the consistency of the sampling method in time and space, the selected site was first subject to a preliminary transect, then submitted after a 9-month interval to an 8-fold oversampling campaign (160 samples at interval of 1.25 m). Leaf litter ants were extracted from elementary 1 m2 quadrats with Winkler apparatus. An increase in the number of samples collected increased S and decreased E but did not affect much H. The sampling interval and extent did not affect S and H beyond a distance of 10 m between samples. An increase of the sampling grain had a similar effect on S than a corresponding increase of the number of samples collected, but caused a proportionaly greater increase of H. The density of species m,2 varied twofold after a 9-month interval; the effect on S could only be partially corrected by rarefaction. The measure of species numerical dominance was little affected by the season. A single standardized A.L.L. transect with Winkler samples collected <45% of the species present in the assemblage. All frequent species were included but their relative frequency was not always representative. A log series distribution of species occurrences was oberved. Fisher's , and Shannon's H were the most appropriate diversity indexes. The former was useful to rarefy or abundify S and the latter was robust against sample size effects. Both parametric and Soberón and Llorente extrapolation methods outperformed non-parametric methods and yielded a fair estimate of total species richness along the transect, a minimum value of S for the habitat sampled. [source] On the estimation of species richness based on the accumulation of previously unrecorded speciesECOGRAPHY, Issue 1 2002Emmanuelle Cam Estimation of species richness of local communities has become an important topic in community ecology and monitoring. Investigators can seldom enumerate all the species present in the area of interest during sampling sessions. If the location of interest is sampled repeatedly within a short time period, the number of new species recorded is typically largest in the initial sample and decreases as sampling proceeds, but new species may be detected if sampling sessions are added. The question is how to estimate the total number of species. The data collected by sampling the area of interest repeatedly can be used to build species accumulation curves: the cumulative number of species recorded as a function of the number of sampling sessions (which we refer to as "species accumulation data"). A classic approach used to compute total species richness is to fit curves to the data on species accumulation with sampling effort. This approach does not rest on direct estimation of the probability of detecting species during sampling sessions and has no underlying basis regarding the sampling process that gave rise to the data. Here we recommend a probabilistic, nonparametric estimator for species richness for use with species accumulation data. We use estimators of population size that were developed for capture-recapture data, but that can be used to estimate the size of species assemblages using species accumulation data. Models of detection probability account for the underlying sampling process. They permit variation in detection probability among species. We illustrate this approach using data from the North American Breeding Bird Survey (BBS). We describe other situations where species accumulation data are collected under different designs (e.g., over longer periods of time, or over spatial replicates) and that lend themselves to of use capture-recapture models for estimating the size of the community of interest. We discuss the assumptions and interpretations corresponding to each situation. [source] Indicators for biodiversity in agricultural landscapes: a pan-European studyJOURNAL OF APPLIED ECOLOGY, Issue 1 2008R. Billeter Summary 1In many European agricultural landscapes, species richness is declining considerably. Studies performed at a very large spatial scale are helpful in understanding the reasons for this decline and as a basis for guiding policy. In a unique, large-scale study of 25 agricultural landscapes in seven European countries, we investigated relationships between species richness in several taxa, and the links between biodiversity and landscape structure and management. 2We estimated the total species richness of vascular plants, birds and five arthropod groups in each 16-km2 landscape, and recorded various measures of both landscape structure and intensity of agricultural land use. We studied correlations between taxonomic groups and the effects of landscape and land-use parameters on the number of species in different taxonomic groups. Our statistical approach also accounted for regional variation in species richness unrelated to landscape or land-use factors. 3The results reveal strong geographical trends in species richness in all taxonomic groups. No single species group emerged as a good predictor of all other species groups. Species richness of all groups increased with the area of semi-natural habitats in the landscape. Species richness of birds and vascular plants was negatively associated with fertilizer use. 4Synthesis and applications. We conclude that indicator taxa are unlikely to provide an effective means of predicting biodiversity at a large spatial scale, especially where there is large biogeographical variation in species richness. However, a small list of landscape and land-use parameters can be used in agricultural landscapes to infer large-scale patterns of species richness. Our results suggest that to halt the loss of biodiversity in these landscapes, it is important to preserve and, if possible, increase the area of semi-natural habitat. [source] Alpha and beta diversity of arthropods and plants in organically and conventionally managed wheat fieldsJOURNAL OF APPLIED ECOLOGY, Issue 4 2007YANN CLOUGH Summary 1Most studies in applied ecology use measures of ,-diversity measures, i.e. the mean diversity on a site, to compare biodiversity effects of different management schemes. The total or ,-diversity within a region, however, need not be correlated with the mean ,-diversity within any site of the region. Thus, analyses of ,-diversity alone may misrepresent the contributions of other diversity components (,) to total diversity (,). 2We apply a biodiversity-partitioning approach to species richness from a comparison between paired organic and conventional wheat fields in 21 sites from three regions in Germany, where we recorded plants, bees, carabids, staphylinids and spiders in the centre and edge of the fields. 3Relative values of ,- and ,-diversity depended on taxon. Both between-site and between-region ,-diversity were very high (in total 60,85%). ,-Diversity and between-site ,-diversity was larger on the edge than in the centre of fields for all taxa. 4,-Diversity, between-site ,-diversity of plants and bees and between-region ,-diversity of bees were higher in organic than in conventional fields, providing local as well as larger-scale species richness benefits. ,-Diversity did not differ between management types for the epigaeic arthropods. Lower between-site ,-diversity was found for spiders in organic fields than in conventional fields, resulting in higher total species richness in conventionally managed wheat. 5Similarity in composition of landscapes surrounding the study fields was correlated with similarity in species composition for epigaeic arthropods in conventional fields. For this group of organisms the variability of landscapes in the sample contributed to increasing ,-diversity. 6Synthesis and applications.,-Diversity accounts for the major part of species richness in agro-ecosystems. Implementing an agri-environment scheme such as organic agriculture may result in either an additional increase of total diversity, as could be shown for plants and bees, or in a decrease in total diversity as was the case for the spiders. Therefore, ,-diversity needs to be included in the evaluation of different management schemes for conservation. For plant and bees it is recommended to implement agri-environment schemes in contrasting landscapes and in different regions to maximize total species richness benefits. [source] Species,area relationships in Mediterranean-climate plant communitiesJOURNAL OF BIOGEOGRAPHY, Issue 11 2003Jon E. Keeley Abstract Aim To determine the best-fit model of species,area relationships for Mediterranean-type plant communities and evaluate how community structure affects these species,area models. Location Data were collected from California shrublands and woodlands and compared with literature reports for other Mediterranean-climate regions. Methods The number of species was recorded from 1, 100 and 1000 m2 nested plots. Best fit to the power model or exponential model was determined by comparing adjusted r2 values from the least squares regression, pattern of residuals, homoscedasticity across scales, and semi-log slopes at 1,100 m2 and 100,1000 m2. Dominance,diversity curves were tested for fit to the lognormal model, MacArthur's broken stick model, and the geometric and harmonic series. Results Early successional Western Australia and California shrublands represented the extremes and provide an interesting contrast as the exponential model was the best fit for the former, and the power model for the latter, despite similar total species richness. We hypothesize that structural differences in these communities account for the different species,area curves and are tied to patterns of dominance, equitability and life form distribution. Dominance,diversity relationships for Western Australian heathlands exhibited a close fit to MacArthur's broken stick model, indicating more equitable distribution of species. In contrast, Californian shrublands, both postfire and mature stands, were best fit by the geometric model indicating strong dominance and many minor subordinate species. These regions differ in life form distribution, with annuals being a major component of diversity in early successional Californian shrublands although they are largely lacking in mature stands. Both young and old Australian heathlands are dominated by perennials, and annuals are largely absent. Inherent in all of these ecosystems is cyclical disequilibrium caused by periodic fires. The potential for community reassembly is greater in Californian shrublands where only a quarter of the flora resprout, whereas three quarters resprout in Australian heathlands. Other Californian vegetation types sampled include coniferous forests, oak savannas and desert scrub, and demonstrate that different community structures may lead to a similar species,area relationship. Dominance,diversity relationships for coniferous forests closely follow a geometric model whereas associated oak savannas show a close fit to the lognormal model. However, for both communities, species,area curves fit a power model. The primary driver appears to be the presence of annuals. Desert scrub communities illustrate dramatic changes in both species diversity and dominance,diversity relationships in high and low rainfall years, because of the disappearance of annuals in drought years. Main conclusions Species,area curves for immature shrublands in California and the majority of Mediterranean plant communities fit a power function model. Exceptions that fit the exponential model are not because of sampling error or scaling effects, rather structural differences in these communities provide plausible explanations. The exponential species,area model may arise in more than one way. In the highly diverse Australian heathlands it results from a rapid increase in species richness at small scales. In mature California shrublands it results from very depauperate richness at the community scale. In both instances the exponential model is tied to a preponderance of perennials and paucity of annuals. For communities fit by a power model, coefficients z and log c exhibit a number of significant correlations with other diversity parameters, suggesting that they have some predictive value in ecological communities. [source] Are local patterns of anthropoid primate diversity related to patterns of diversity at a larger scale?JOURNAL OF BIOGEOGRAPHY, Issue 6 2000M. J. Lawes Abstract Aims, (1) To determine the relationship between local and regional anthropoid primate species richness. (2) To establish the spatial and temporal scale at which the ultimate processes influencing patterns of primate species coexistence operate. Location Continental landmasses of Africa, South America and Asia (India to China, and all islands as far south as New Guinea). Methods, The local,regional species richness relationship for anthropoid primates is estimated by regressing local richness against regional richness (independent variable). Local richness is estimated in small, replicate local assemblages sampled in regions that vary in total species richness. A strong linear relationship is taken as evidence that local assemblages are unsaturated and local richness results from proportional sampling of the regional pool. An asymptotic curvilinear relationship is interpreted to reflect saturated communities, where strong biotic interactions limit local richness and local processes structure the species assemblage. As a further test of the assumption of local assemblage saturation, we looked for density compensation in high-density local primate assemblages. Results, The local,regional species richness relationship was linear for Africa and South America, and the slope of the relationship did not differ between the two continents. For Asia, curvilinearity best described the relationship between local and regional richness. Asian primate assemblages appear to be saturated and this is confirmed by density compensation among Asian primates. However, density compensation was also observed among African primates. The apparent assemblage saturation in Asia is not a species,area phenomenon related to the small size of the isolated islands and their forest blocks, since similar low local species richness occurs in large forests on mainland and/or peninsular Asia. Main conclusions In Africa and South America local primate assemblage composition appears to reflect the influence of biogeographic processes operating on regional spatial scales and historical time scales. In Asia the composition of primate assemblages are by-and-large subject to ecological constraint operating over a relatively small spatial and temporal scale. The possible local influence of the El Niño Southern Oscillations on the evolution and selection of life-history characteristics among Asian primates, and in determining local patterns of primate species coexistence, warrants closer inspection. [source] Invasive mutualisms and the structure of plant,pollinator interactions in the temperate forests of north-west Patagonia, ArgentinaJOURNAL OF ECOLOGY, Issue 1 2006CAROLINA L. MORALES Summary 1Alien species may form plant,animal mutualistic complexes that contribute to their invasive potential. Using multivariate techniques, we examined the structure of a plant,pollinator web comprising both alien and native plants and flower visitors in the temperate forests of north-west Patagonia, Argentina. Our main objective was to assess whether plant species origin (alien or native) influences the composition of flower visitor assemblages. We also examined the influence of other potential confounding intrinsic factors such as flower symmetry and colour, and extrinsic factors such as flowering time, site and habitat disturbance. 2Flowers of alien and native plant species were visited by a similar number of species and proportion of insects from different orders, but the composition of the assemblages of flower-visiting species differed between alien and native plants. 3The influence of plant species origin on the composition of flower visitor assemblages persisted after accounting for other significant factors such as flowering time, bearing red corollas, and habitat disturbance. This influence was at least in part determined by the fact that alien flower visitors were more closely associated with alien plants than with native plants. The main native flower visitors were, on average, equally associated with native and alien plant species. 4In spite of representing a minor fraction of total species richness (3.6% of all species), alien flower visitors accounted for > 20% of all individuals recorded on flowers. Thus, their high abundance could have a significant impact in terms of pollination. 5The mutualistic web of alien plants and flower-visiting insects is well integrated into the overall community-wide pollination web. However, in addition to their use of the native biota, invasive plants and flower visitors may benefit from differential interactions with their alien partners. The existence of these invader complexes could contribute to the spread of aliens into novel environments. [source] Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams?OIKOS, Issue 1 2010Jani Heino A topic under intensive study in community ecology and biogeography is the degree to which microscopic, as well as macroscopic organisms, show spatially-structured variation in community characteristics. In general, unicellular microscopic organisms are regarded as ubiquitously distributed and, therefore, without a clear biogeographic signal. This view was summarized 75,years ago by Baas-Becking, who stated "everything is everywhere, but, the environment selects". Within the context of metacommunity theory, this hypothesis is congruent with the species sorting model. By using a broad-scale dataset on stream diatom communities and environmental predictor variables across most of Finland, our main aim was to test this hypothesis. Patterns of spatial autocorrelation were evaluated by Moran's I based correlograms, whereas partial regression analysis and partial redundancy analysis were used to quantify the relative importance of environmental and spatial factors on total species richness and on community composition, respectively. Significant patterns of spatial autocorrelation were found for all environmental variables, which also varied widely. Our main results were clear-cut. In general, pure spatial effects clearly overcame those of environmental effects, with the former explaining much more variation in species richness and community composition. Most likely, missing environmental variables cannot explain the higher predictive power of spatial variables, because we measured key factors that have previously been found to be the most important variables (e.g. pH, conductivity, colour, phosphorus, nitrogen) shaping the structure of diatom communities. Therefore, our results provided only limited support for the Baas-Becking hypothesis and the species sorting perspective of metacommunity theory. [source] Effects of Restoration on Plant Species Richness and Composition in Scandinavian Semi-Natural GrasslandsRESTORATION ECOLOGY, Issue 3 2004Regina Lindborg Abstract Plant species richness in rural landscapes of northern Europe has been positively influenced by traditional management for millennia. Owing to abandonment of these practices, the number of species-rich semi-natural grasslands has decreased, and remaining habitats suffer from deterioration, fragmentation, and plant species decline. To prevent further extinctions, restoration efforts have increased during the last decades, by reintroducing grazing in former semi-natural grasslands. To assess the ecological factors that might influence the outcome of such restorations, we made a survey of semi-natural grasslands in Sweden that have been restored during the last decade. We investigated how plant species richness, species density, species composition, and abundance of 10 species that are indicators of grazing are affected by (1) the size of the restored site, (2) the time between abandonment of grazing and restoration, (3) the time elapsed since restoration, and (4) the abundance of trees and shrubs at the restored site. Only two factors, abundance of trees and shrubs and time since restoration, were positively associated with total species richness and species density per meter square at restored sites. Variation in species composition among restored sites was not related to any of the investigated factors. Species composition was relatively similar among sites, except in mesic/wet grasslands. The investigated factors had small effects on the abundance of the grazing-indicator species. Only Campanula rotundifolia responded to restoration with increasing abundance and may thus be a suitable indicator of improved habitat quality. In conclusion, positive effects on species richness may appear relatively soon after restoration, but rare, short-lived species are still absent. Therefore, remnant populations in surrounding areas may be important in fully recreating former species richness and composition. [source] Effects of forest management on epiphytic lichen diversity in Mediterranean forestsAPPLIED VEGETATION SCIENCE, Issue 2 2010Gregorio Aragón Abstract Question: What are the responses of epiphytic lichens to the intensity of management along a large environmental gradient in Mediterranean Quercus forests? Location: Central Spain. Methods: This study was carried out on 4590 trees located in 306 forest stands dominated by Quercus faginea or Quercus ilex ssp. ballota. The effect of forest management and other predictor variables on several species diversity indicators were studied. Variables modelled were total species richness, cyanolichen richness and community composition. A large number of predictor variables were included: forest fragmentation (patch size, stand variability), climate and topographic (altitude, slope, sun radiation, annual rainfall and mean annual temperature) and intensity of management. General linear models and constrained ordination techniques were used to model community traits and species composition, respectively. Results: Total richness and especially cyanolichens richness were significantly and negatively affected by the intensity of management. Lichen composition was influenced by management intensity, climatic and topographic variables and stand variability. Conclusions: In Mediterranean forests, human activities related to forestry, agricultural and livestock use cause impoverishment of lichen communities, including the local disappearance of the most demanding species. The conservation of unmanaged forests with a dense canopy is crucial for lichen diversity. [source] Long-term effectiveness of sowing high and low diversity seed mixtures to enhance plant community development on ex-arable fieldsAPPLIED VEGETATION SCIENCE, Issue 1 2007Jan Lep Abstract Questions: How is succession on ex-arable land affected by sowing high and low diversity mixtures of grassland species as compared to natural succession? How long do effects persist? Location: Experimental plots installed in the Czech Republic, The Netherlands, Spain, Sweden and the United Kingdom. Methods: The experiment was established on ex-arable land, with five blocks, each containing three 10 m × 10 m experimental plots: natural colonization, a low- (four species) and high-diversity (15 species) seed mixture. Species composition and biomass was followed for eight years. Results: The sown plants considerably affected the whole successional pathway and the effects persisted during the whole eight year period. Whilst the proportion of sown species (characterized by their cover) increased during the study period, the number of sown species started to decrease from the third season onwards. Sowing caused suppression of natural colonizing species, and the sown plots had more biomass. These effects were on average larger in the high diversity mixtures. However, the low diversity replicate sown with the mixture that produced the largest biomass or largest suppression of natural colonizers fell within the range recorded at the five replicates of the high diversity plots. The natural colonization plots usually had the highest total species richness and lowest productivity at the end of the observation period. Conclusions: The effect of sowing demonstrated dispersal limitation as a factor controlling the rate of early secondary succession. Diversity was important primarily for its,insurance effect': the high diversity mixtures were always able to compensate for the failure of some species. [source] The conservation of unionid mussels in Louisiana rivers: diversity, assemblage composition and substrate useAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 3 2001Kenneth M. Brown Abstract 1.,To aid in their conservation, unionid mussel assemblages were surveyed in three relatively unstudied rivers in south-eastern Louisiana. 2.,Although total species richness varied among rivers, species diversity (as estimated both by Shannon-Weaver H, and rank-abundance curves) was fairly similar. 3.,Assemblage composition varied among the rivers, with the West Pearl River having the most dissimilar group of species. The endangered inflated heel splitter, Potamilus inflatus, was found only in the lower Amite River. 4.,The most common species had size distributions skewed towards larger individuals, but small individuals were collected (including the inflated heel splitter), indicating successful recruitment. 5.,Mussels were more common in silt than in sand or gravel, perhaps because fine sediments are more stable through time in these river systems. 6.,The greatest threat to these assemblages is gravel mining in the upper reaches of the rivers. At the present time only rivers with endangered species, or that have been declared scenic rivers, have any protection from gravel mining. Copyright © 2001 John Wiley & Sons, Ltd. [source] Species richness,environment relationships within coastal sclerophyll and mesophyll vegetation in Ku-ring-gai Chase National Park, New South Wales, AustraliaAUSTRAL ECOLOGY, Issue 4 2003Andrew F. Le Brocque Abstract Patterns in species richness from a wide range of plant communities in Ku-ring-gai Chase National Park, New South Wales, Australia, were examined in relation to a number of environmental variables, including soil physical and chemical characteristics. Total species richness and richness of three growth-form types (trees, shrubs and ground cover) were determined in duplicate 500-m2 quadrats from 50 sites on two geological substrata: Hawkesbury Sandstone and Narrabeen shales and sandstones. Generalized linear models (GLM) were used to determine the amount of variation in species richness that could be significantly explained by the measured environmental variables. Seventy-three per cent of the variation in total species richness was explained by a combination of soil physical and chemical variables and site attributes. The environmental variables explained 24% of the variation in tree species richness, 67% of the variation in shrub species richness and 62% of the variation in ground cover species richness. These results generally support the hypothesis of an environmental influence on patterns in total species richness and richness of shrubs and ground cover species. However, tree species richness was not adequately predicted by any of the measured environmental variables; the present environment exerts little influence on the richness of this growth-form type. Historical factors, such as fire or climatic/environmental conditions at time of germination or seedling establishment, may be important in determining patterns in tree species richness at the local scale. [source] Estimating bird species richness: How should repeat surveys be organized in time?AUSTRAL ECOLOGY, Issue 6 2002Scott A. Field Abstract Estimates of species richness for a given area require that repeat surveys be taken, so that the statistical robustness of the estimate can be assessed. But how should these repeat surveys be organized in time? Here we present a case study of Australian woodland birds, surveyed using the ,active timed area search' method, which has become the standard unit for the Australian Bird Atlas, a continental-scale bird survey. To date, there has been no assessment of how estimates of species richness derived from this method are affected by the temporal organization of the repeat surveys. For instance, can conducting the repeat surveys in sequence on the same day effectively capture richness, or will additional species be obtained by repeating the surveys on different days within a season? If so, does the spacing of the repeat visits throughout the season have an effect? To answer these questions, we surveyed woodland birds in the Mount Lofty Ranges, South Australia, during late spring,summer 1999,2000, and compared the performance of two different temporal configurations of repeat visits to sites: (i) six repeat surveys performed on the same day; and (ii) three repeat surveys on different days. For both, we calculated the average number of species actually sighted and also estimated total species richness. The data supported our hypothesis that the same-day surveys would yield fewer species and underestimate total species richness. The different-day repeats captured significantly more species per unit of survey effort, and yielded a higher richness estimate. However, the timespan over which different-day surveys were conducted within a season did not have a significant influence on species richness estimates, evincing a qualitative advantage to surveying on different days, regardless of the spacing of repeat visits. These results may be of assistance to conservation managers when planning cost-efficient monitoring regimes. [source] The radiation of the Cape flora, southern AfricaBIOLOGICAL REVIEWS, Issue 4 2003H. P. LINDER ABSTRACT The flora of the south-western tip of southern Africa, the Cape flora, with some 9000 species in an area of 90 000 km2 is much more speciose than can be expected from its area or latitude, and is comparable to that expected from the most diverse equatorial areas. The endemism of almost 70%, on the other hand, is comparable to that found on islands. This high endemism is accounted for by the ecological and geographical isolation of the Cape Floristic Region, but explanations for the high species richness are not so easily found. The high species richness is accentuated when its taxonomic distribution is investigated: almost half of the total species richness of the area is accounted for by 33,Cape floral clades'. These are clades which may have initially diversified in the region, and of which at least half the species are still found in the Cape Floristic Region. Such a high contribution by a very small number of clades is typical of island floras, not of mainland floras. The start of the radiation of these clades has been dated by molecular clock techniques to between 18 million years ago (Mya)(Pelargonium) and 8 Mya (Phylica), but only six radiations have been dated to date. The fossil evidence for the dating of the radiation is shown to be largely speculative. The Cenozoic environmental history of southern Africa is reviewed in search of possible triggers for the radiations, climatic changes emerge as the most likely candidate. Due to a very poor fossil record, the climatic history has to be inferred from larger scale patterns, these suggest large-scale fluctuations between summer wet (Palaeocene, Early Miocene)and summer dry climates (Oligocene, Middle Miocene to present). The massive speciation in the Cape flora might be accounted for by the diverse limitations to gene flow (dissected landscapes, pollinator specialisation, long flowering times allowing much phenological specialisation), as well as a richly complex environment providing a diversity of selective forces (geographically variable climate, much altitude variation, different soil types, rocky terrain providing many micro-niches, and regular fires providing both intermediate disturbances, as well as different ways of surviving the fires). However, much of this is based on correlation, and there is a great need for (a)experimental testing of the proposed speciation mechanisms, (b)more molecular clock estimates of the age and pattern of the radiations, and (c)more fossil evidence bearing on the past climates. [source] |