Total Pool (total + pool)

Distribution by Scientific Domains


Selected Abstracts


C4-derived soil organic carbon decomposes faster than its C3 counterpart in mixed C3/C4 soils

GLOBAL CHANGE BIOLOGY, Issue 10 2007
JONATHAN G. WYNN
Abstract The large difference in the degree of discrimination of stable carbon isotopes between C3 and C4 plants is widely exploited in global change and carbon cycle research, often with the assumption that carbon retains the carbon isotopic signature of its photosynthetic pathway during later stages of decomposition in soil and sediments. We applied long-term incubation experiments and natural 13C-labelling of C3 and C4-derived soil organic carbon (SOC) collected from across major environmental gradients in Australia to elucidate a significant difference in the rate of decomposition of C3- and C4-derived SOC. We find that the active pool of SOC (ASOC) derived from C4 plants decomposes at over twice the rate of the total pool of ASOC. As a result, the proportion of C4 photosynthesis represented in the heterotrophic CO2 flux from soil must be over twice the proportional representation of C4-derived biomass in SOC. This observation has significant implications for much carbon cycle research that exploits the carbon isotopic difference in these two photosynthetic pathways. [source]


Site-dependent population dynamics: the influence of spatial habitat heterogeneity on individual fitness in the sedge warbler Acrocephalus schoenobaenus

JOURNAL OF AVIAN BIOLOGY, Issue 2 2008
Tadeusz Zaj
During nine years of study, we detected a mechanism corresponding to site dependence operating in a population of the sedge warbler Acrocephalus schoenobaenus inhabiting a natural wetland of high within-habitat heterogeneity. Sites with a larger share of cover by tall wetland vegetation were preempted during spring settlement; they were occupied in more breeding seasons and by more experienced males. The fitness of males occupying these sites was higher in terms of local recruit production. The total area occupied by the population expanded or contracted depending on its population size. This mechanism increased or decreased the mean site quality, influencing local recruitment of young, although mainly by changing the share of unproductive sites in the total pool of occupied sites. The results indicate that population demographic rates may depend on the spatial heterogeneity of resources at the level of individuals. [source]


A comprehensive and novel predictive modeling technique using detailed pathology factors in men with localized prostate carcinoma

CANCER, Issue 7 2002
Louis Potters M.D.
Abstract BACKGROUND The purpose of the current study was to evaluate modeling strategies using sextant core prostate biopsy specimen data that would best predict biochemical control in patients with localized prostate carcinoma treated with permanent prostate brachytherapy (PPB). METHODS One thousand four hundred seventy,seven patients underwent PPB between 1992 and 2000. The authors restricted analysis to those patients who had sextant biopsies (n = 1073). A central pathology review was undertaken on all specimens. Treatment consisted of PPB with either I-125 or Pd-103 prescribed to 144 Gy or 140 Gy, respectively. Two hundred twenty,eight patients (21%) received PPB in combination with external radiotherapy and 333 patients (31%) received neoadjuvant hormones. In addition to clinical stage, biopsy Gleason sum, and pretreatment prostate specific antigen (pretx-PSA), the following detailed biopsy variables were considered: mean percentage of cancer in an involved core; maximum percentage of cancer; mean primary and secondary Gleason grades; maximum Gleason grade (primary or secondary); percentage of cancer in the apex, mid, and base; percent of cores positive; maximum primary and secondary Gleason grades in apex, mid, and base; maximum percent cancer in apex, mid, and base; maximum Gleason grade in apex, mid, and base; maximum primary Gleason grade; and maximum secondary Gleason grade. In all, 23 biopsy variables were considered. Four modeling strategies were compared. As a base model, the authors considered the pretx-PSA, clinical stage, and biopsy Gleason sum as predictors. For the second model, the authors added percent of cores positive. The third modeling strategy was to use stepwise variable selection to select only those variables (from the total pool of 26) that were statistically significant. The fourth strategy was to apply principal components analysis, which has theoretical advantages over the other strategies. Principal components analysis creates component scores that account for maximum variance in the predictors. RESULTS The median followup of the study cohort was 36 months (range, 6,92), and the Kattan modification of the American Society for Therapeutic Radiology and Oncology (ASTRO) definition was used to define PSA freedom from recurrence (PSA-FFR). The four models were compared in their ability to predict PSA-FFR as measured by the Somers D rank correlation coefficient. The Somers D rank correlation coefficients were then corrected for optimism with use of bootstrapping. The results for the four models were 0.32, 0.34, 0.37, and 0.39, respectively. CONCLUSIONS The current study shows that the use of principal components analysis with additional pathology data is a more discriminating model in predicting outcome in prostate carcinoma than other conventional methods and can also be used to model outcome predictions for patients treated with radical prostatectomy and external beam. Cancer 2002;95:1451,6. © 2002 American Cancer Society. DOI 10.1002/cncr.10869 [source]


Short- and long-term modulation of the lutein epoxide and violaxanthin cycles in two species of the Lauraceae: sweet bay laurel (Laurus nobilis L.) and avocado (Persea americana Mill.)

PLANT BIOLOGY, Issue 3 2008
R. Esteban
Abstract Short- and long-term responses of the violaxanthin (V) and lutein epoxide (Lx) cycles were studied in two species of Lauraceae: sweet bay laurel (Laurus nobilis L.) and avocado (Persea americana L.). The Lx content exceeded the V content in shade leaves of both species. Both Lx and V were de-epoxidised on illumination, but only V was fully restored by epoxidation in low light. Violaxanthin was preferentially de-epoxidised in low light in L. nobilis. This suggests that Lx accumulates with leaf ageing, partly because its conversion to lutein is limited in shade. After exposure to strong light, shade leaves of avocado readjusted the total pools of ,- and ,-xanthophyll cycles by de novo synthesis of antheraxanthin, zeaxanthin and lutein. This occurred in parallel with a sustained depression of Fv/Fm. In Persea indica, a closely related but low Lx species, Fv/Fm recovered faster after a similar light treatment, suggesting the involvement of the Lx cycle in sustained energy dissipation. Furthermore, the seasonal correlation between non-reversible Lx and V photoconversions and pre-dawn Fv/Fm in sun leaves of sweet bay supported the conclusion that the Lx cycle is involved in a slowly reversible downregulation of photosynthesis analogous to the V cycle. [source]