Topographic Surveys (topographic + survey)

Distribution by Scientific Domains


Selected Abstracts


Geophysical surveys of Bury Walls hill fort, Shropshire

ARCHAEOLOGICAL PROSPECTION, Issue 4 2003
Ruth E. Murdie
Abstract The hill fort of Bury Walls in Shropshire has been surveyed extensively by topographical and geophysical methods with the aims of recovering evidence for occupation, characterising the use of the hill fort and clarifying the chronological development of the site. Topographic surveys delineated the current extent of the fort and its massive fortifications. Resistance surveys showed several interesting features inside the fort, including extensive use of the geology to make flattened ledges in an otherwise quite uneven fort interior, a possible cross dyke, interior roads and traces of possible dwellings. Magnetic gradient surveys again showed clearly the possible cross dyke. Additional geophysical surveys attempted to define the depths of these features found in the resistance and magnetic gradient maps. This study, although not fully answering the original aims, provides a useful basis for future excavation. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Close range digital photogrammetric analysis of experimental drainage basin evolution

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2003
J. Brasington
Abstract Despite the difficulties of establishing formal hydraulic and geometric similarity, small-scale models of drainage basins have often been used to investigate the evolution and dynamics of larger-scale landforms. Historically, this analysis has been restricted to planform basin characteristics and only in the last decade has the topographic similarity of experimental landscapes been explored through explicitly three-dimensional parameters such as the distributions of cumulative drainage area, area,slope and catchment elevation. The current emphasis on three-dimensional morphometry reflects a growing awareness of the descriptive paucity of planform data and the need for more robust analysis of spatial scaling relationships. This paradigm shift has been significantly facilitated by technological developments in topographic survey and digital elevation modelling (DEM) which now present the opportunity to acquire and analyse high-resolution, distributed elevation data. Few studies have, however, attempted to use topographic modelling to provide information on the changing pattern and rate of sediment transport though an evolving landscape directly by using multitemporal DEM differencing techniques. This paper reports a laboratory study in which digital photogrammetry was employed to derive high-resolution DEMs of a simulated landscape in declining equilibrium at 15 minute frequency through a 240 minute simulation. Detailed evaluation of the DEMs revealed a vertical precision of 1·2 mm and threshold level of change detection between surfaces of ±3 mm at the 95 per cent confidence level. This quality assurance set the limits for determining the volumetric change between surfaces, which was used to recover the sediment budget through the experiment and to examine local - and basin-scale rates of sediment transport. A comparison of directly observed and morphometric estimates of sediment yield at the basin outlet was used to quantify the closure of the sediment budget over the simulation, and revealed an encouragingly small 6·2 per cent error. The application of this dynamic morphological approach has the potential to offer new insights into the controls on landform development, as demonstrated here by an analysis of the changing pattern of the basin sediment delivery ratio during network growth. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 2 2010
Joseph M. Wheaton
Abstract Repeat topographic surveys are increasingly becoming more affordable, and possible at higher spatial resolutions and over greater spatial extents. Digital elevation models (DEMs) built from such surveys can be used to produce DEM of Difference (DoD) maps and estimate the net change in storage terms for morphological sediment budgets. While these products are extremely useful for monitoring and geomorphic interpretation, data and model uncertainties render them prone to misinterpretation. Two new methods are presented, which allow for more robust and spatially variable estimation of DEM uncertainties and propagate these forward to evaluate the consequences for estimates of geomorphic change. The first relies on a fuzzy inference system to estimate the spatial variability of elevation uncertainty in individual DEMs while the second approach modifies this estimate on the basis of the spatial coherence of erosion and deposition units. Both techniques allow for probabilistic representation of uncertainty on a cell-by-cell basis and thresholding of the sediment budget at a user-specified confidence interval. The application of these new techniques is illustrated with 5 years of high resolution survey data from a 1,km long braided reach of the River Feshie in the Highlands of Scotland. The reach was found to be consistently degradational, with between 570 and 1970,m3 of net erosion per annum, despite the fact that spatially, deposition covered more surface area than erosion. In the two wetter periods with extensive braid-plain inundation, the uncertainty analysis thresholded at a 95% confidence interval resulted in a larger percentage (57% for 2004,2005 and 59% for 2006,2007) of volumetric change being excluded from the budget than the drier years (24% for 2003,2004 and 31% for 2005,2006). For these data, the new uncertainty analysis is generally more conservative volumetrically than a standard spatially-uniform minimum level of detection analysis, but also produces more plausible and physically meaningful results. The tools are packaged in a wizard-driven Matlab software application available for download with this paper, and can be calibrated and extended for application to any topographic point cloud (x,y,z). Copyright © 2009 John Wiley & Sons, Ltd. [source]


Distorted Froude-scaled flume analysis of large woody debris

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2001
Nicholas P. Wallerstein
Abstract This paper presents the results of a movable-boundary, distorted, Froude-scaled hydraulic model based on Abiaca Creek, a sand-bedded channel in northern Mississippi. The model was used to examine the geomorphic and hydraulic impact of simplified large woody debris (LWD) elements. The theory of physical scale models is discussed and the method used to construct the LWD test channel is developed. The channel model had bed and banks moulded from 0·8 mm sand, and flow conditions were just below the threshold of motion so that any sediment transport and channel adjustment were the result of the debris element. Dimensions and positions of LWD elements were determined using a debris jam classification model. Elements were attached to a dynamometer to measure element drag forces, and channel adjustment was determined through detailed topographic surveys. The fluid drag force on the elements decreased asymptotically over time as the channel boundary eroded around the elements due to locally increased boundary shear stress. Total time for geomorphic adjustment computed for the prototype channel at the Q2 discharge (discharge occurring once every two years on average) was as short as 45 hours. The size, depth and position of scour holes, bank erosion and bars created by flow acceleration past the elements were found to be related to element length and position within the channel cross-section. Morphologies created by each debris element in the model channel were comparable with similar jams observed in the prototype channel. Published in 2001 John Wiley & Sons, Ltd. [source]