Topographic Index (topographic + index)

Distribution by Scientific Domains


Selected Abstracts


Topographic controls on the chemistry of subsurface stormflow

HYDROLOGICAL PROCESSES, Issue 10 2001
Daniel L. Welsch
Abstract Models are needed that describe how topography and other watershed characteristics affect the chemical composition of runoff waters, yet little spatially distributed data exist to develop such models. A topographically driven flushing mechanism for nitrate (NO3,) and dissolved organic carbon has been described in recent literature; however, this mechanism has not yet been thoroughly tested. A 24 ha catchment in the Catskill Mountains of New York was clearcut in the winter of 1996,97, resulting in elevated NO3, concentrations in soil water, groundwater and streamflow. We sampled shallow subsurface stormflow (SSSF) and streamflow six times during the spring and summer of 1998, 1 year after the harvest. We used a spatially distributed network of piezometers to investigate the relationship between topography and SSSF chemistry. Several indices of topography were computed, including the commonly employed topographic index of Beven and Kirkby (1979; Hydrological Sciences Bulletin24: 43,69). Topographic index was positively correlated with NO3, concentrations in SSSF. The strength of the NO3,,topography relationship was best explained by antecedent soil temperature and antecedent precipitation conditions. Results suggest a topographically driven flushing of high NO3, shallow soil at the site during storm events. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Modelling variable source area dynamics in a CEAP watershed

ECOHYDROLOGY, Issue 3 2009
Helen E. Dahlke
Abstract In the Northeast US, saturation excess is the most dominant runoff process and locations of runoff source areas, typically called variable source areas (VSAs), are determined by the available soil water storage and the landscape topographic position. To predict runoff generated from VSAs some water quality models use the Soil Conservation Service Curve Number equation (SCS-CN), which assumes a constant initial abstraction of rainfall is retained by the watershed prior to the beginning of runoff. We apply a VSA interpretation of the SCS-CN runoff equation that allows the initial abstraction to vary with antecedent moisture conditions. We couple this modified SCS-CN approach with a semi-distributed water balance model to predict runoff, and distribute predictions using a soil topographic index for the Town Brook watershed in the Catskill Mountains of New York State. The accuracy of predicted VSA extents using both the original and the modified SCS-CN equation were evaluated for 14 rainfall-runoff events through a comparison with average water table depths measured at 33 locations in Town Brook from March,September 2004. The modified SCS-CN equation captured VSA dynamics more accurately than the original equation. However, during events with high antecedent rainfall VSA dynamics were still under-predicted suggesting that VSA runoff is not captured solely by knowledge of the soil water deficit. Considering the importance of correctly predicting runoff generation and pollutant source areas in the landscape, the results of this study demonstrate the feasibility of integrating VSA hydrology into water quality models to reduce non-point source pollution. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Controls on surface water chemistry in two lake-watersheds in the Adirondack region of New York: differences in nitrogen solute sources and sinks

HYDROLOGICAL PROCESSES, Issue 10 2007
Mari Ito
Abstract The southwestern Adirondack region of New York receives among the highest rates of atmospheric nitrogen (N) deposition in the USA. Atmospheric N deposition to sensitive ecosystems, like the Adirondacks, may increase the acidification of soils through losses of exchangeable nutrient cations, and the acidification of surface waters associated with enhanced mobility of nitrate (NO3,). However, watershed attributes, including surficial terrestrial characteristics, in-lake processing, and geological settings, have been found to complicate the relationships between atmospheric N deposition and N drainage losses. We studied two lake-watersheds in the southwestern Adirondacks, Grass Pond and Constable Pond, which are located in close proximity (,26 km) and receive similarly high N deposition, but have contrasting watershed attributes (e.g. wetland area, geological settings). Since the difference in the influence of N deposition was minimal, we were able to examine both within- and between-watershed influences of land cover, the contribution of glacial till groundwater inputs, and in-lake processes on surface water chemistry with particular emphasis on N solutes and dissolved organic carbon (DOC). Monthly samples at seven inlets and one outlet of each lake were collected from May to October in 1999 and 2000. The concentrations of NO3, were high at the Grass Pond inlets, especially at two inlets, and NO3, was the major N solute at the Grass Pond inlets. The concentrations of likely weathering products (i.e. dissolved Si, Ca2+, Mg2+, Na+) as well as acid neutralizing capacity and pH values, were also particularly high at those two Grass Pond inlets, suggesting a large contribution of groundwater inputs. Dissolved organic N (DON) was the major N solute at the Constable Pond inlets. The higher concentrations of DON and DOC at the Constable Pond inlets were attributed to a large wetland area in the watershed. The DOC/DON ratios were also higher at the Constable Pond inlets, possibly due to a larger proportion of coniferous forest area. Although DON and DOC were strongly related, the stronger relationship of the proportion of wetland area with DOC suggests that additional factors regulate DON. The aggregated representation of watershed physical features (i.e. elevation, watershed area, mean topographic index, hypsometric-analysis index) was not clearly related to the lake N and DOC chemistry. Despite distinctive differences in inlet N chemistry, NO3, and DON concentrations at the outlets of the two lakes were similar. The lower DOC/DON ratios at the lake outlets and at the inlets having upstream ponds suggest the importance of N processing and organic N sources within the lakes. Although an inverse relationship between NO3, and DOC/DON has been suggested to be indicative of a N deposition gradient, the existence of this relationship for sites that receive similar atmospheric N deposition suggest that the relationship between NO3, and the DOC/DON ratio is derived from environmental and physical factors. Our results suggest that, despite similar wet N deposition at the two watershed sites, N solutes entering lakes were strongly affected by hydrology associated with groundwater contribution and the presence of wetlands, whereas N solutes leaving lakes were strongly influenced by in-lake processing. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Relationship of topography to surface water chemistry with particular focus on nitrogen and organic carbon solutes within a forested watershed in Hokkaido, Japan

HYDROLOGICAL PROCESSES, Issue 2 2006
Akiko Ogawa
Abstract We studied the relationships between streamwater chemistry and the topography of subcatchments in the Dorokawa watershed in Hokkaido Island, northern Japan, to examine the use of topography as a predictor of streamwater chemistry in a watershed with relatively moderate terrain compared with other regions of Japan. Topographic characteristics of the Dorokawa watershed and its subcatchments were expressed as topographic index (TI) values, which ranged from 4·5 to 20·4 for individual grid cells (50 × 50 m2), but averaged from 6·4 to 7·4 for the 20 subcatchments. Streamwater samples for chemical analyses were collected four times between June and October 2002 from 20 locations in the watershed. The pH of water that passed through the watershed increased from ,5·0 to 7·0, with major increases in Na+ and Ca2+ and marked decreases in NO3, and SO. Distinctive spatial patterns were observed for dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and NO3, concentrations of streamwater across the watershed. Statistical analyses indicated significant linear relationships between the average TI values of subcatchments and DOC, DON, and NO3, concentrations. Furthermore, the proportion of DOC in streamwaters in the wet season increased with TI values relative to other nitrogen species, whereas NO3, concentrations decreased with TI. The gradients of soil wetness and the presence of wetlands explained many of the observed spatial and temporal patterns of DOC, DON, and NO3, concentrations in the surface waters of the Dorokawa watershed. Our results suggest that the TI is especially useful for predicting the spatial distribution of DOC, DON and NO3, in the surface waters of Hokkaido, where topographical relief is moderate and wetlands more common than in other regions of Japan. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Using a topographic index to distribute variable source area runoff predicted with the SCS curve-number equation

HYDROLOGICAL PROCESSES, Issue 15 2004
Steve W. Lyon
Abstract Because the traditional Soil Conservation Service curve-number (SCS-CN) approach continues to be used ubiquitously in water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed and tested a distributed approach for applying the traditional SCS-CN equation to watersheds where VSA hydrology is a dominant process. Predicting the location of source areas is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non-point-source pollution. The method presented here used the traditional SCS-CN approach to predict runoff volume and spatial extent of saturated areas and a topographic index, like that used in TOPMODEL, to distribute runoff source areas through watersheds. The resulting distributed CN,VSA method was applied to two subwatersheds of the Delaware basin in the Catskill Mountains region of New York State and one watershed in south-eastern Australia to produce runoff-probability maps. Observed saturated area locations in the watersheds agreed with the distributed CN,VSA method. Results showed good agreement with those obtained from the previously validated soil moisture routing (SMR) model. When compared with the traditional SCS-CN method, the distributed CN,VSA method predicted a similar total volume of runoff, but vastly different locations of runoff generation. Thus, the distributed CN,VSA approach provides a physically based method that is simple enough to be incorporated into water quality models, and other tools that currently use the traditional SCS,CN method, while still adhering to the principles of VSA hydrology. Copyright © 2004 John Wiley & Sons, Ltd. [source]


A digital elevation analysis: a spatially distributed flow apportioning algorithm

HYDROLOGICAL PROCESSES, Issue 10 2004
Sanghyun Kim
Abstract An integrated flow determination algorithm is proposed to calculate the spatial distribution of the topographic index to the channel network. The advantages of a single flow direction algorithm and other multiple flow direction schemes are selectively considered in order to address the drawbacks of existing algorithms. A spatially varying flow apportioning factor is introduced to distribute the contributing area from upslope cells to downslope cells. The channel initiation threshold concept is expanded and integrated into a spatially distributed flow apportioning algorithm to delineate a realistic channel network. The functional relationships between the flow apportioning factors and the expanded channel initiation threshold (ECIT) are developed to address the spatially varied flow distribution patterns considering the permanent channel locations. A genetic algorithm (GA) is integrated into the spatially distributed flow apportioning algorithm (SDFAA) with the objective function of river cell evaluation. An application of a field example suggests that the spatially distributed flow apportioning scheme provides several advantages over the existing approaches; the advantages include the relaxation of overdissipation problems near channel cells, the connectivity feature of river cells and the robustness of the parameter determination procedure over existing algorithms. Copyright © 2004 John Wiley & Sons, Ltd. [source]


A network-index-based version of TOPMODEL for use with high-resolution digital topographic data

HYDROLOGICAL PROCESSES, Issue 1 2004
S. N. Lane
Abstract This paper describes the preliminary development of a network-index approach to modify and to extend the classic TOPMODEL. Application of the basic Beven and Kirkby form of TOPMODEL to high-resolution (2·0 m) laser altimetric data (based upon the UK Environment Agency's light detection and ranging (LIDAR) system) to a 13·8 km2 catchment in an upland environment identified many saturated areas that remained unconnected from the drainage network even during an extreme flood event. This is shown to be a particular problem with using high-resolution topographic data, especially over large appreciable areas. To deal with the hydrological consequences of disconnected areas, we present a simple network index modification in which saturated areas are only considered to contribute when the topographic index indicates continuous saturation through the length of a flow path to the point where the path becomes a stream. This is combined with an enhanced method for dealing with the problem of pits and hollows, which is shown to become more acute with higher resolution topographic data. The paper concludes by noting the implications of the research as presented for both methodological and substantive research that is currently under way. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Topographic controls on the chemistry of subsurface stormflow

HYDROLOGICAL PROCESSES, Issue 10 2001
Daniel L. Welsch
Abstract Models are needed that describe how topography and other watershed characteristics affect the chemical composition of runoff waters, yet little spatially distributed data exist to develop such models. A topographically driven flushing mechanism for nitrate (NO3,) and dissolved organic carbon has been described in recent literature; however, this mechanism has not yet been thoroughly tested. A 24 ha catchment in the Catskill Mountains of New York was clearcut in the winter of 1996,97, resulting in elevated NO3, concentrations in soil water, groundwater and streamflow. We sampled shallow subsurface stormflow (SSSF) and streamflow six times during the spring and summer of 1998, 1 year after the harvest. We used a spatially distributed network of piezometers to investigate the relationship between topography and SSSF chemistry. Several indices of topography were computed, including the commonly employed topographic index of Beven and Kirkby (1979; Hydrological Sciences Bulletin24: 43,69). Topographic index was positively correlated with NO3, concentrations in SSSF. The strength of the NO3,,topography relationship was best explained by antecedent soil temperature and antecedent precipitation conditions. Results suggest a topographically driven flushing of high NO3, shallow soil at the site during storm events. Copyright © 2001 John Wiley & Sons, Ltd. [source]


GIS-Based Predictive Models of Hillslope Runoff Generation Processes,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2009
Mansour D. Leh
Abstract:, Successful nonpoint source pollution control using best management practice placement is a complex process that requires in-depth knowledge of the locations of runoff source areas in a watershed. Currently, very few simulation tools are capable of identifying critical runoff source areas on hillslopes and those available are not directly applicable under all runoff conditions. In this paper, a comparison of two geographic information system (GIS)-based approaches: a topographic index model and a likelihood indicator model is presented, in predicting likely locations of saturation excess and infiltration excess runoff source areas in a hillslope of the Savoy Experimental Watershed located in northwest Arkansas. Based on intensive data collected from a two-year field study, the spatial distributions of hydrologic variables were processed using GIS software to develop the models. The likelihood indicator model was used to produce probability surfaces that indicated the likelihood of location of both saturation and infiltration excess runoff mechanisms on the hillslope. Overall accuracies of the likelihood indicator model predictions varied between 81 and 87% for the infiltration excess and saturation excess runoff locations respectively. On the basis of accuracy of prediction, the likelihood indicator models were found to be superior (accuracy 81-87%) to the predications made by the topographic index model (accuracy 69.5%). By combining statistics with GIS, runoff source areas on a hillslope can be identified by incorporating easily determined hydrologic measurements (such as bulk density, porosity, slope, depth to bed rock, depth to water table) and could serve as a watershed management tool for identifying critical runoff source areas in locations where the topographic index or other similar methods do not provide reliable results. [source]


Evaluation of spatial variability in snow water equivalent for a high mountain catchment

HYDROLOGICAL PROCESSES, Issue 3 2004
S. P. Anderton
Abstract Multivariate statistical analysis was used to explore relationships between catchment topography and spatial variability in snow accumulation and melt processes in a small headwater catchment in the Spanish Pyrenees. Manual surveys of snow depth and density provided information on the spatial distribution of snow water equivalent (SWE) and its depletion over the course of the 1997 and 1998 melt seasons. A number of indices expressing the topographic control on snow processes were extracted from a detailed digital elevation model of the catchment. Bivariate screening was used to assess the relative importance of these topographic indices in controlling snow accumulation at the start of the melt season, average melt rates and the timing of snow disappearance. This suggested that topographic controls on the redistribution of snow by wind are the most important influence on snow distribution at the start of the melt season. Furthermore, it appeared that spatial patterns of snow disappearance were largely determined by the distribution of snow water equivalent (SWE) at the start of the melt season, rather than by spatial variability in melt rates during the melt season. Binary regression tree models relating snow depth and disappearance date to terrain indices were then constructed. These explained 70,80% of the variance in the observed data. As well as providing insights into the influence of topography on snow processes, it is suggested that the techniques presented herein could be used in the parameterization of distributed snowmelt models, or in the design of efficient stratified snow surveys. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Origin of the Blue Ridge escarpment along the passive margin of Eastern North America

BASIN RESEARCH, Issue 1 2004
James A. Spotila
The Blue Ridge escarpment is a rugged landform situated within the ancient Appalachian orogen. While similar in some respects to the great escarpments along other passive margins, which have evolved by erosion following rifting, its youthful topographic expression has inspired proposals of Cenozoic tectonic rejuvenation in eastern North America. To better understand the post-orogenic and post-rift geomorphic evolution of passive margins, we have examined the origin of this landform using low-temperature thermochronometry and manipulation of topographic indices. Apatite (U,Th)/He and fission-track analyses along transects across the escarpment reveal a younging trend towards the coast. This pattern is consistent with other great escarpments and fits with an interpretation of having evolved by prolonged erosion, without the requirement of tectonic rejuvenation. Measured ages are also comparable specifically to those measured along other great escarpments that are as much as 100 Myr younger. This suggests that erosional mechanisms that maintain rugged escarpments in the early post-rift stages may remain active on ancient passive margins for prolonged periods. The precise erosional evolution of the escarpment is less clear, however, and several end-member models can explain the data. Our preferred model, which fits with all data, involves a significant degree of erosional escarpment retreat in the Cenozoic. Although this suggests that early onset of topographic stability is not required of passive margin evolution, more data are required to better constrain the details of the escarpment's development. [source]