Toxicity Issues (toxicity + issues)

Distribution by Scientific Domains


Selected Abstracts


Studies on bioremediation of polycyclic aromatic hydrocarbon-contaminated sediments: Bioavailability, biodegradability, and toxicity issues

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2003
Henry H. Tabak
Abstract The widespread contamination by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes. This research studied a chronically PAH-contaminated estuarine sediment from the East River (ER; NY, USA) characterized by high concentrations of PAHs (,4,190 ppm), sulfide, and metals and a marine sediment from New York/New Jersey Harbor (NY/NJH; USA) with only trace quantities of PAHs (0.1,0.6 ppm). The focus was to examine the relationship between bioavailability of PAHs and their biological removal in a slurry system. Freshwater and marine sediment toxicity tests were conducted to measure baseline toxicity of both sediments to amphipods, aquatic worms, fathead and sheepshead minnow larvae, and a vascular plant; to determine the cause of toxicity; and to evaluate the effectiveness of the biotreatment strategies in reducing toxicity. Results showed the ER sediment was acutely toxic to all freshwater and marine organisms tested and that the toxicity was mainly caused by sulfide, PAHs, and metals present in the sediment. In spite of the high toxicity, most of the PAH compounds showed significant degradation in the aerobic sediment/water slurry system if the initial high oxygen demand due to the high sulfide content of the sediment was overcome. The removal of PAHs by biodegradation was closely related to their desorbed amount in 90% isopropanol solution during 24 h of contact, while the desorption of model PAH compounds from freshly spiked NY/NJH sediment did not describe the bioavailability of PAHs in the East River sediment well. The research improves our understanding of bioavailability as a controlling factor in bioremediation of PAHs and the potential of aerobic biodegradation for PAH removal and ecotoxicity reduction. [source]


Rapid detection and characterization of reactive drug metabolites in vitro using several isotope-labeled trapping agents and ultra-performance liquid chromatography/time-of-flight mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 6 2009
Timo Rousu
Reactive metabolites are believed to be one of the main reasons for unexpected drug-induced toxicity issues, by forming covalent adducts with cell proteins or DNA. Due to their high reactivity and short lifespan they are not directly detected by traditional analytical methods, but are most traditionally analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) after chemical trapping with nucleophilic agents such as glutathione. Here, a simple but very efficient assay was built up for screening reactive drug metabolites, utilizing stable isotope labeled glutathione, potassium cyanide and semicarbazide as trapping agents and highly sensitive ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC/TOFMS) as an analytical tool. A group of twelve structurally different compounds was used as a test set, and a large number of trapped metabolites were detected for most of them, including many conjugates not reported previously. Glutathione-trapped metabolites were detected for nine of the twelve test compounds, whereas cyanide-trapped metabolites were found for eight and semicarbazide-trapped for three test compounds. The high mass accuracy of TOFMS provided unambiguous identification of change in molecular formula by formation of a reactive metabolite. In addition, use of a mass defect filter was found to be a usable tool when mining the trapped conjugates from the acquired data. The approach was shown to provide superior detection sensitivity in comparison to traditional methods based on neutral loss or precursor ion scanning with a triple quadrupole mass spectrometer, and clearly more efficient detection and characterization of reactive drug metabolites with a simpler test setup. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Correspondence: Awareness of local anaesthetic toxicity issues among hospital staff

ANAESTHESIA, Issue 9 2010
J. Collins
No abstract is available for this article. [source]


Intrinsic Toxicity of Hemoglobin: How to Counteract It

ARTIFICIAL ORGANS, Issue 2 2009
Jan Simoni
Abstract The development of safe and effective blood substitutes is of great importance in both civilian and military medicine. The currently tested hemoglobin (Hb)-based oxygen carriers, however, have toxicity and efficacy problems. A number of unwanted effects have been observed in human trials, creating doubts about their clinical usefulness. In some subjects, vasoconstriction and decreased blood flow to the vital organs, heart attack, stroke, systemic inflammation, organ damage, and even death, have been attributed to the transfusion of these experimental products. Hb is a well-known pressor agent and strong oxidant, although the full understanding of its intrinsic toxicity is yet to be uncovered. In particular, the complete mechanism of Hb-induced vasoconstriction needs full elucidation. Knowledge of the biological events that trigger the induction of genes upon treatment with redox-active Hb, as well as its catabolism, is still incomplete. It seems that our limited knowledge of free Hb effects in vivo is the main reason for not yet having a viable substitute of human blood. The future for universal red cell substitutes is in the new-generation products that address all of Hb's intrinsic toxicity issues. [source]