Tonnes

Distribution by Scientific Domains


Selected Abstracts


The international logistics of wood pellets for heating and power production in Europe: Costs, energy-input and greenhouse gas balances of pellet consumption in Italy, Sweden and the Netherlands

BIOFUELS, BIOPRODUCTS AND BIOREFINING, Issue 2 2010
Richard Sikkema
Abstract The European wood pellet market is booming: concerns about climate change and renewable energy targets are predominant drivers. The aim of this analysis is to compare typical wood pellet chains from the purchase of the feedstock from sawmills to the conversion into heat or electricity. Cost structures, primary energy inputs and avoided greenhouse gas (GHG) emissions are reviewed. Three cases are defined: pellets for district heating (DH) in Sweden (replacing heavy fuel oil); bagged pellets for residential heating in Italy (natural gas); and Canadian pellets for electricity production in the Netherlands (coal). Supply may cost ,110,,170 per tonne of delivered pellets, with the main cost factors being feedstock collection, drying and long-distance ocean transportation (for Canadian pellets only). Largest avoided emissions are for power production (1937 kg CO2eq/tonne of pellets), followed by district heating (1483 kg). In relative terms, the GHG reduction varies from 81% for residential heating (with pre-dried feedstock) to 97% for DH. Based on a wood-pellet consumption of 8.2 million tonnes, the EU27 plus Norway and Switzerland avoided about 12.6 million tonnes of CO2 emissions in 2008. Concluding, wood pellets can achieve substantial GHG savings, especially when substituting coal for power production. However, wood pellets are relatively expensive, especially compared to coal. Only in the case of high oil prices, can the substitution of heating oil for DH be commercially viable. In most other cases, substitution is only possible with financial support from national governments, for example, feed-in tariffs or carbon taxes. The commercial markets for CO2 emission rights may cover some costs, but their impact is still limited. Copyright © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd [source]


Trouble on the reef: the imperative for managing vulnerable and valuable fisheries

FISH AND FISHERIES, Issue 3 2005
Yvonne Sadovy
Abstract Reef fishes are significant socially, nutritionally and economically, yet biologically they are vulnerable to both over-exploitation and degradation of their habitat. Their importance in the tropics for living conditions, human health, food security and economic development is enormous, with millions of people and hundreds of thousands of communities directly dependent, and many more indirectly so. Reef fish fisheries are also critical safety valves in times of economic or social hardship or disturbance, and are more efficient, less wasteful and support far more livelihoods per tonne produced than industrial scale fisheries. Yet, relative to other fisheries globally, those associated with coral reefs are under-managed, under-funded, under-monitored, and as a consequence, poorly understood or little regarded by national governments. Even among non-governmental organizations, which are increasingly active in tropical marine issues, there is typically little focus on reef-associated resources, the interest being more on biodiversity per se or protection of coral reef habitat. This essay explores the background and history to this situation, examines fishery trends over the last 30 years, and charts a possible way forward given the current realities of funding, capacity, development patterns and scientific understanding of coral reef ecosystems. The luxury live reef food-fish trade is used throughout as a case study because it exemplifies many of the problems and challenges of attaining sustainable use of coral reef-associated resources. The thesis developed is that sustaining reef fish fisheries and conserving biodiversity can be complementary, rather than contradictory, in terms of yield from reef systems. I identify changes in perspectives needed to move forward, suggest that we must be cautious of ,fashionable' solutions or apparent ,quick fixes', and argue that fundamental decisions must be made concerning the short and long-term values of coral reef-associated resources, particularly fish, for food and cash and regarding alternative sources of protein. Not to address the problems will inevitably lead to growing poverty, hardship and social unrest in many areas. [source]


The role of policy instruments for promoting combined heat and power production with low CO2 emissions in district heating systems

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 6 2005
Å. Marbe
Abstract Policy instruments clearly influence the choice of production technologies and fuels in large energy systems, including district heating networks. Current Swedish policy instruments aim at promoting the use of biofuel in district heating systems, and at promoting electric power generation from renewable energy sources. However, there is increasing pressure to harmonize energy policy instruments within the EU. In addition, natural gas based combined cycle technology has emerged as the technology of choice in the power generation sector in the EU. This study aims at exploring the role of policy instruments for promoting the use of low CO2 emissions fuels in high performance combined heat and power systems in the district heating sector. The paper presents the results of a case study for a Swedish district heating network where new large size natural gas combined cycle (NGCC) combined heat and power (CHP) is being built. Given the aim of current Swedish energy policy, it is assumed that it could be of interest in the future to integrate a biofuel gasifier to the CHP plant and co-fire the gasified biofuel in the gas turbine unit, thereby reducing usage of fossil fuel. The goals of the study are to evaluate which policy instruments promote construction of the planned NGCC CHP unit, the technical performance of an integrated biofuelled pressurized gasifier with or without dryer on plant site, and which combination of policy instruments promote integration of a biofuel gasifier to the planned CHP unit. The power plant simulation program GateCycle was used for plant performance evaluation. The results show that current Swedish energy policy instruments favour investing in the NGCC CHP unit. The corresponding cost of electricity (COE) from the NGCC CHP unit is estimated at 253 SEK MWh,1, which is lower than the reference power price of 284 SEK MWh,1. Investing in the NGCC CHP unit is also shown to be attractive if a CO2 trading system is implemented. If the value of tradable emission permits (TEP) in such as system is 250 SEK tonne,1, COE is 353 SEK MWh,1 compared to the reference power price of 384 SEK MWh,1. It is possible to integrate a pressurized biofuel gasifier to the NGCC CHP plant without any major re-design of the combined cycle provided that the maximum degree of co-firing is limited to 27,38% (energy basis) product gas, depending on the design of the gasifier system. There are many parameters that affect the economic performance of an integrated biofuel gasifier for product gas co-firing of a NGCC CHP plant. The premium value of the co-generated renewable electricity and the value of TEPs are very important parameters. Assuming a future CO2 trading system with a TEP value of 250 SEK tonne,1 and a premium value of renewable electricity of 200 SEK MWh,1 COE from a CHP plant with an integrated biofuelled gasifier could be 336 SEK MWh,1, which is lower than both the reference market electric power price and COE for the plant operating on natural gas alone. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Strategies to reduce the brightness reversion of industrial ECF bleached Eucalyptus globulus kraft pulp

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 3 2008
Isabel M. C. L. Sêco
Abstract BACKGROUND: Brightness stability is a key property of bleached chemical pulps and is primarily determined by wood species and bleaching process conditions. Eucalyptus globulus is becoming a very important raw material for hardwood pulp production. In spite of this importance, there is a relative lack of systematic studies in the literature dealing with the subject. This research aims to study the effect of some of the foremost bleaching parameters of a DEDD bleaching sequence as well as the effect of a final P stage (DEDP instead of DEDD) in the brightness stability of bleached E. globulus kraft pulps. RESULTS: The increase of the D0 stage temperature from 55 °C to 90 °C caused an increase in brightness stability. Increasing the ClO2 charges from 2.8% to 3.2% also improved significantly the brightness stability. A high H2SO4 charge in the D0 stage (10 kg tonne,1 pulp) diminished the brightness stability. The combination of H2O2 addition to the E stage and ClO2 reduction in the two final D stages does not affect brightness reversion. Raising the D2 stage temperature from 65 °C to 82 °C decreased the brightness reversion, while an increase was obtained when the temperature rose above 82 °C. Substitution of the last ClO2 stage in the DEDD sequence by a H2O2 stage (DEDP) significantly reduced the brightness reversion. CONCLUSION: For an existing pulp mill in which the implementation of new technologies to improve brightness reversion is considered, the results obtained showed that brightness stability can be improved without any significant capital investment. Copyright © 2007 Society of Chemical Industry [source]


A superstructure-based optimal synthesis of PSA cycles for post-combustion CO2 capture,

AICHE JOURNAL, Issue 7 2010
Anshul Agarwal
Abstract Recent developments have shown pressure/vacuum swing adsorption (PSA/VSA) to be a promising option to effectively capture CO2 from flue gas streams. In most commercial PSA cycles, the weakly adsorbed component in the mixture is the desired product, and enriching the strongly adsorbed CO2 is not a concern. On the other hand, it is necessary to concentrate CO2 to high purity to reduce CO2 sequestration costs and minimize safety and environmental risks. Thus, it is necessary to develop PSA processes specifically targeted to obtain pure strongly adsorbed component. A multitude of PSA/VSA cycles have been developed in the literature for CO2 capture from feedstocks low in CO2 concentration. However, no systematic methodology has been suggested to develop, evaluate, and optimize PSA cycles for high purity CO2 capture. This study presents a systematic optimization-based formulation to synthesize novel PSA cycles for a given application. In particular, a novel PSA superstructure is presented to design optimal PSA cycle configurations and evaluate CO2 capture strategies. The superstructure is rich enough to predict a number of different PSA operating steps. The bed connections in the superstructure are governed by time-dependent control variables, which can be varied to realize most PSA operating steps. An optimal sequence of operating steps is achieved through the formulation of an optimal control problem with the partial differential and algebraic equations of the PSA system and the cyclic steady state condition. Large-scale optimization capabilities have enabled us to adopt a complete discretization methodology to solve the optimal control problem as a large-scale nonlinear program, using the nonlinear optimization solver IPOPT. The superstructure approach is demonstrated for case studies related to post-combustion CO2 capture. In particular, optimal PSA cycles were synthesized, which maximize CO2 recovery for a given purity, and minimize overall power consumption. The results show the potential of the superstructure to predict PSA cycles with up to 98% purity and recovery of CO2. Moreover, for recovery of around 85% and purity of over 90%, these cycles can recover CO2 from atmospheric flue gas with a low power consumption of 465 k Wh tonne,1 CO2. The approach presented is, therefore, very promising and quite useful for evaluating the suitability of different adsorbents, feedstocks, and operating strategies for PSA, and assessing its usefulness for CO2 capture. Published 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]


The use of life-cycle assessment to evaluate the environmental impacts of growing genetically modified, nitrogen use-efficient canola

PLANT BIOTECHNOLOGY JOURNAL, Issue 4 2008
Alison Strange
Summary Agriculture, particularly intensive crop production, makes a significant contribution to environmental pollution. A variety of canola (Brassica napus) has been genetically modified to enhance nitrogen use efficiency, effectively reducing the amount of fertilizer required for crop production. A partial life-cycle assessment adapted to crop production was used to assess the potential environmental impacts of growing genetically modified, nitrogen use-efficient (GMNUE) canola in North Dakota and Minnesota compared with a conventionally bred control variety. The analysis took into account the entire production system used to produce 1 tonne of canola. This comprised raw material extraction, processing and transportation, as well as all agricultural field operations. All emissions associated with the production of 1 tonne of canola were listed, aggregated and weighted in order to calculate the level of environmental impact. The findings show that there are a range of potential environmental benefits associated with growing GMNUE canola. These include reduced impacts on global warming, freshwater ecotoxicity, eutrophication and acidification. Given the large areas of canola grown in North America and, in particular, Canada, as well as the wide acceptance of genetically modified varieties in this area, there is the potential for GMNUE canola to reduce pollution from agriculture, with the largest reductions predicted to be in greenhouse gases and diffuse water pollution. [source]


Quantifying the effects of fungicides and disease resistance on greenhouse gas emissions associated with wheat production

PLANT PATHOLOGY, Issue 6 2008
P. M. Berry
A method is presented to quantify the net effect of disease management on greenhouse gas (GHG) emissions per hectare of crop and per tonne of crop produce (grain, animal feed, flour or bioethanol). Calculations were based on experimental and survey data representative of UK wheat production during the period 2004,06. Elite wheat cultivars, with contrasting yields and levels of disease resistance, were compared. Across cultivars, fungicides increased yields by an average of 1·78 t ha,1 and GHG emissions were reduced from 386 to 327 kg CO2 eq. t,1 grain. The amount by which fungicides increased yield , and hence reduced emissions per tonne , was negatively correlated with cultivar resistance to septoria leaf blotch (Mycosphaerella graminicola, anamorph Septoria tritici). GHG emissions of treated cultivars were always less than those of untreated cultivars. Without fungicide use, an additional 0·93 Mt CO2 eq. would be emitted to maintain annual UK grain production at 15 Mt, if the additional land required for wheat production displaced other UK arable crops/set aside. The GHG cost would be much greater if grassland or natural vegetation were displaced. These additional emissions would be reduced substantially if cultivars had more effective septoria leaf blotch resistance. The GHGs associated with UK fungicide use were calculated to be 0·06 Mt CO2 eq. per annum. It was estimated that if it were possible to eliminate diseases completely by increasing disease resistance without any yield penalty and/or developing better fungicides, emissions could theoretically be reduced further to 313 kg CO2 eq. t,1 grain. [source]


Current Loads of Coarse Woody Debris on Southeastern Australian Floodplains: Evaluation of Change and Implications for Restoration

RESTORATION ECOLOGY, Issue 4 2002
Ralph MacNally
Abstract We evaluated the status of coarse woody debris (CWD, fallen wood) on floodplains of the southern Murray-Darling basin of southeastern Australia. The floodplains are dominated floristically by the river red gum Eucalyptus camaldulensis. Aerial survey techniques were used to estimate the amounts of woody debris within 200 m of the channels along 2,442 km of 11 rivers of the system, including the Murray and Darling Rivers and the Darling Anabranch. Aerially based indices were converted into wood volumes by using ground-truthing at a selection of sites; there was a strong correlation between index values and measured wood volume densities. For thickly forested sites such as Barmah, Gunbower Island, and the Ovens floodplains, the aerial method was not useful, so ground measurements at randomly positioned sites within the forests were used. Volumes were translated into mass by using conversion factors drawn from the literature. We estimated that total tonnage on approximately 221,000 ha of floodplain forests was 4.175 ± 0.579 × 106 tonne. In the larger forested blocks (>7,000 ha), mean wood densities ranged between approximately 12 tonne/ha on the lower Goulburn up to approximately 24 tonne/ha at Barmah State Forest. The area-weighted mean for the entire area was approximately 19 tonne/ha. A main purpose of the research was to place these figures into an historical perspective to evaluate implications for restoration. A thorough search of historical documentation revealed that there are no extant data upon which to estimate pre-European settlement levels. We used information from an apparently undisturbed "unmanaged" site in the Millewa forests of southern New South Wales as a basis. Wood density there corresponded to a mean figure of 125 tonne/ha wood-mass density. By using this figure we estimate that CWD levels on the southern Murray-Darling basin may be of the order of 15% of pre-European settlement levels. Full restoration of the 221,000 ha surveyed would require 23.5 ± 0.579 × 106 tonne, which is equivalent to about 600,000 mature (1 m diameter at breast height) river red gum trees or the amount of timber derived from clear felling about 115,000 ha of river red gum forest at current stocking levels. We discuss the implications of this massive deficit and possible short- and long-term solutions. [source]


Combined effects of water exchange regimes and calcium carbonate additions on growth and survival of hatchery-reared juvenile spotted babylon (Babylonia areolata Link 1807) in recirculating grow-out system

AQUACULTURE RESEARCH, Issue 7 2006
S Kritsanapuntu
Abstract To determine a suitable culture environment to maximize growth and survival, the hatchery-reared juvenile spotted babylon, Babylonia areolata, were held in plastic rearing tanks at four calcium carbonate additions of 0, 100 and 300 g tonne,1, and four water exchange regimes of 0-, 15-, 30- and 60-day intervals in a recirculating grow-out system for 120 days. The results clearly showed that growth was greatest between water exchange regimes of 15- and 30-day intervals and all calcium carbonate additions, with water exchange regimes of 0- and 60-day intervals resulting in poor growth. Final survival was highest between water exchange regimes of 15- and 30-day intervals, and all calcium carbonate additions, with water exchange regimes of 0-day intervals and all calcium carbonate additions resulting in high mortalities. This study showed that water exchange regimes had a stronger influence on the growth of juvenile B. areolata than calcium carbonate additions. It is recommended that B. areolata juveniles be maintained within the water exchange regimes range of 15,30-day intervals and at calcium carbonate additions between 0 and 500 g tonne,1, providing optimum conditions for production of this species in a recirculating grow-out system. [source]


The international logistics of wood pellets for heating and power production in Europe: Costs, energy-input and greenhouse gas balances of pellet consumption in Italy, Sweden and the Netherlands

BIOFUELS, BIOPRODUCTS AND BIOREFINING, Issue 2 2010
Richard Sikkema
Abstract The European wood pellet market is booming: concerns about climate change and renewable energy targets are predominant drivers. The aim of this analysis is to compare typical wood pellet chains from the purchase of the feedstock from sawmills to the conversion into heat or electricity. Cost structures, primary energy inputs and avoided greenhouse gas (GHG) emissions are reviewed. Three cases are defined: pellets for district heating (DH) in Sweden (replacing heavy fuel oil); bagged pellets for residential heating in Italy (natural gas); and Canadian pellets for electricity production in the Netherlands (coal). Supply may cost ,110,,170 per tonne of delivered pellets, with the main cost factors being feedstock collection, drying and long-distance ocean transportation (for Canadian pellets only). Largest avoided emissions are for power production (1937 kg CO2eq/tonne of pellets), followed by district heating (1483 kg). In relative terms, the GHG reduction varies from 81% for residential heating (with pre-dried feedstock) to 97% for DH. Based on a wood-pellet consumption of 8.2 million tonnes, the EU27 plus Norway and Switzerland avoided about 12.6 million tonnes of CO2 emissions in 2008. Concluding, wood pellets can achieve substantial GHG savings, especially when substituting coal for power production. However, wood pellets are relatively expensive, especially compared to coal. Only in the case of high oil prices, can the substitution of heating oil for DH be commercially viable. In most other cases, substitution is only possible with financial support from national governments, for example, feed-in tariffs or carbon taxes. The commercial markets for CO2 emission rights may cover some costs, but their impact is still limited. Copyright © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd [source]


Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol

BIOTECHNOLOGY & BIOENGINEERING, Issue 3 2010
Chandraraj Krishnan
Abstract Sugarcane is one of the major agricultural crops cultivated in tropical climate regions of the world. Each tonne of raw cane production is associated with the generation of 130,kg dry weight of bagasse after juice extraction and 250,kg dry weight of cane leaf residue postharvest. The annual world production of sugarcane is ,1.6 billion tones, generating 279 MMT tones of biomass residues (bagasse and cane leaf matter) that would be available for cellulosic ethanol production. Here, we investigated the production of cellulosic ethanol from sugar cane bagasse and sugar cane leaf residue using an alkaline pretreatment: ammonia fiber expansion (AFEX). The AFEX pretreatment improved the accessibility of cellulose and hemicelluloses to enzymes during hydrolysis by breaking down the ester linkages and other lignin carbohydrate complex (LCC) bonds and the sugar produced by this process is found to be highly fermentable. The maximum glucan conversion of AFEX pretreated bagasse and cane leaf residue by cellulases was ,85%. Supplementation with hemicellulases during enzymatic hydrolysis improved the xylan conversion up to 95,98%. Xylanase supplementation also contributed to a marginal improvement in the glucan conversion. AFEX-treated cane leaf residue was found to have a greater enzymatic digestibility compared to AFEX-treated bagasse. Co-fermentation of glucose and xylose, produced from high solid loading (6% glucan) hydrolysis of AFEX-treated bagasse and cane leaf residue, using the recombinant Saccharomyces cerevisiae (424A LNH-ST) produced 34,36,g/L of ethanol with 92% theoretical yield. These results demonstrate that AFEX pretreatment is a viable process for conversion of bagasse and cane leaf residue into cellulosic ethanol. Biotechnol. Bioeng. 2010;107: 441,450. © 2010 Wiley Periodicals, Inc. [source]


Crisis Discourses and Technology Regulation in a Weak State: Responses to a Pesticide Disaster in Honduras

DEVELOPMENT AND CHANGE, Issue 1 2003
Kees Jansen
Hurricane Mitch hit Honduras in October 1998, leaving a trail of death, injury and devastating damage. As it tore through the country, the hurricane damaged a number of warehouses which contained pesticides, resulting in the discharge of more than 70 tonnes of pesticides into the environment. This article explores the responses of the Honduran state and international relief agencies to this event. It analyses the use of crisis discourses and their role in the reconstruction process, arguing that crisis discourses may legitimize political rule in the context of a weak state. It goes on to make the point that the shaping of crisis discourses is not the exclusive terrain of politicians but necessarily involves technical experts. [source]


Sediment transport in a highly regulated fluvial system during two consecutive floods (lower Ebro River, NE Iberian Peninsula)

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2005
Damia Vericat
Abstract The transfer of sediment through a highly regulated large fluvial system (lower Ebro River) was analysed during two consecutive floods by means of sediment sampling. Suspended sediment and bedload transport were measured upstream and downstream of large reservoirs. The dams substantially altered flood timing, particularly the peaks, which were advanced downstream from the dams for flood control purposes. The suspended sediment yield upstream from the dams was 1 700 000 tonnes, which represented nearly 99 per cent of the total solid yield. The mean concentrations were close to 0·5 g l,1. The sediment yield downstream from the dams was an order of magnitude lower (173 000 tonnes), showing a mean concentration of 0·05 g l,1. The dams captured up to 95 per cent of the fine sediment carried in suspension in the river channel, preventing it from reaching the lowermost reaches of the river and the delta plain. Total bedload transport upstream from the dams was estimated to be about 25 000 tonnes, only 1·5 per cent of the total load. The median bedload rate was 100 gms,1. Below the dams, the river carried 178 000 tonnes, around 51 per cent of the total load, at a mean rate of 250 g ms,1. The results of sediment transport upstream and downstream from the large dams illustrate the magnitude of the sediment deficit in the lower Ebro River. The river mobilized a total of 350 000 tonnes in the downstream reaches, which were not replaced by sediment from upstream. Therefore, sediment was necessarily entrained from the riverbed and channel banks, causing a mean incision of 33 mm over the 27 km long study reach, altogether a significant step towards the long-term degradation of the lower Ebro River. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Can cocaine use be evaluated through analysis of wastewater?

ADDICTION, Issue 5 2009
A nation-wide approach conducted in Belgium
ABSTRACT Aims Cocaine is the second most-used illicit drug world-wide and its consumption is increasing significantly, especially in western Europe. Until now, the annual prevalence has been estimated indirectly by means of interviews. A recently introduced and direct nation-wide approach based on measurements of the major urinary excreted metabolite of cocaine, benzoylecgonine, in wastewater is proposed. Design Wastewater samples from 41 wastewater treatment plants (WWTPs) in Belgium, covering approximately 3 700 000 residents, were collected. Each WWTP was sampled on Wednesdays and Sundays during two sampling campaigns in 2007,08. Samples were analysed for cocaine (COC) and its metabolites, benzoylecgonine (BE) and ecgonine methylester (EME) by a validated procedure based on liquid chromatography coupled with tandem mass spectrometry. Concentrations of BE were used to calculate cocaine consumption (g/day per 1000 inhabitants) for each WWTP region and for both sampling campaigns (g/year per 1000 inhabitants). Findings Weekend days showed significantly higher cocaine consumption compared with weekdays. The highest cocaine consumption was observed for WWTPs receiving wastewater from large cities, such as Antwerp, Brussels and Charleroi. Results were extrapolated for the total Belgian population and an estimation of a yearly prevalence of cocaine use was made based on various assumptions. An amount of 1.88 tonnes (t) per year [standard error (SE) 0.05 t] cocaine is consumed in Belgium, corresponding to a yearly prevalence of 0.80% (SE 0.02%) for the Belgian population aged 15,64 years. This result is in agreement with an earlier reported estimate of the Belgian prevalence of cocaine use conducted through socio-epidemiological studies (0.9% for people aged 15,64 years). Conclusions Wastewater analysis is a promising tool to evaluate cocaine consumption at both local and national scale. This rapid and direct estimation of the prevalence of cocaine use in Belgium corresponds with socio-epidemiological data. However, the strategy needs to be refined further to allow a more exact calculation of cocaine consumption from concentrations of BE in wastewater. [source]


Limits of life in MgCl2 -containing environments: chaotropicity defines the window

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2007
John E. Hallsworth
Summary The biosphere of planet Earth is delineated by physico-chemical conditions that are too harsh for, or inconsistent with, life processes and maintenance of the structure and function of biomolecules. To define the window of life on Earth (and perhaps gain insights into the limits that life could tolerate elsewhere), and hence understand some of the most unusual biological activities that operate at such extremes, it is necessary to understand the causes and cellular basis of systems failure beyond these windows. Because water plays such a central role in biomolecules and bioprocesses, its availability, properties and behaviour are among the key life-limiting parameters. Saline waters dominate the Earth, with the oceans holding 96.5% of the planet's water. Saline groundwater, inland seas or saltwater lakes hold another 1%, a quantity that exceeds the world's available freshwater. About one quarter of Earth's land mass is underlain by salt, often more than 100 m thick. Evaporite deposits contain hypersaline waters within and between their salt crystals, and even contain large subterranean salt lakes, and therefore represent significant microbial habitats. Salts have a major impact on the nature and extent of the biosphere, because solutes radically influence water's availability (water activity) and exert other activities that also affect biological systems (e.g. ionic, kosmotropic, chaotropic and those that affect cell turgor), and as a consequence can be major stressors of cellular systems. Despite the stressor effects of salts, hypersaline environments can be heavily populated with salt-tolerant or -dependent microbes, the halophiles. The most common salt in hypersaline environments is NaCl, but many evaporite deposits and brines are also rich in other salts, including MgCl2 (several hundred million tonnes of bischofite, MgCl2·6H2O, occur in one formation alone). Magnesium (Mg) is the third most abundant element dissolved in seawater and is ubiquitous in the Earth's crust, and throughout the Solar System, where it exists in association with a variety of anions. Magnesium chloride is exceptionally soluble in water, so can achieve high concentrations (> 5 M) in brines. However, while NaCl-dominated hypersaline environments are habitats for a rich variety of salt-adapted microbes, there are contradictory indications of life in MgCl2 -rich environments. In this work, we have sought to obtain new insights into how MgCl2 affects cellular systems, to assess whether MgCl2 can determine the window of life, and, if so, to derive a value for this window. We have dissected two relevant cellular stress-related activities of MgCl2 solutions, namely water activity reduction and chaotropicity, and analysed signatures of life at different concentrations of MgCl2 in a natural environment, namely the 0.05,5.05 M MgCl2 gradient of the seawater : hypersaline brine interface of Discovery Basin , a large, stable brine lake almost saturated with MgCl2, located on the Mediterranean Sea floor. We document here the exceptional chaotropicity of MgCl2, and show that this property, rather than water activity reduction, inhibits life by denaturing biological macromolecules. In vitro, a test enzyme was totally inhibited by MgCl2 at concentrations below 1 M; and culture medium with MgCl2 concentrations above 1.26 M inhibited the growth of microbes in samples taken from all parts of the Discovery interface. Although DNA and rRNA from key microbial groups (sulfate reducers and methanogens) were detected along the entire MgCl2 gradient of the seawater : Discovery brine interface, mRNA, a highly labile indicator of active microbes, was recovered only from the upper part of the chemocline at MgCl2 concentrations of less than 2.3 M. We also show that the extreme chaotropicity of MgCl2 at high concentrations not only denatures macromolecules, but also preserves the more stable ones: such indicator molecules, hitherto regarded as evidence of life, may thus be misleading signatures in chaotropic environments. Thus, the chaotropicity of MgCl2 would appear to be a window-of-life-determining parameter, and the results obtained here suggest that the upper MgCl2 concentration for life, in the absence of compensating (e.g. kosmotropic) solutes, is about 2.3 M. [source]


Application of sewage sludge to arable land,soil concentrations of polybrominated diphenyl ethers and polychorinated dibenzo- p -dioxins, dibenzofurans, and biphenyls, and their accumulation in earthworms

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2002
Nadja Matscheko
Abstract Soils from five agricultural sites, three research sites, and two privately owned farms were analyzed for polychlorinated dibenzo- p -dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and polybronimated diphenylethers (PBDEs). In soils that had not been treated with sludge (reference soils), the international toxic equivalents (I-TEQs) were 0.6 to 1.5 pg/g dry matter (DM) for the PCDD/Fs, which are low compared to generally reported background soil levels in Europe. The concentrations of sum of six penta- and hexa-PCBs were 450 to 1,400 pg/g DM. The PBDEs 47 and 99 dominated among the tri- to hepta-PBDEs analyzed (8,80 pg/g DM). The impact of adding 1 to 3 tonnes of sludge (DM) per hectare per year on the concentrations was studied at the three research sites by calculating ratios of the compounds in sludge-treated soil to reference soil (S/R ratio). The concentrations of I-TEQs did not increase in the sludge-treated soil, whereas the S/R ratios for PBDEs were greater than one. Also, although the PCB contents were higher in the sludge-treated soils, the background sources were more important for the concentrations of PCBs than of PBDEs. The largest increase in the S/R ratios was found at a private farm where large amounts of sludge had been used in the past. Accumulation of the compounds in earthworms from the sites also was investigated. The biota-soil accumulation factors (BSAFs) of the tested compounds declined in the following order: ortho -PCBs , PBDEs > non-ortho -PCBs > 2,3,7,8-substituted PCDD/Fs. The average BSAF for ortho -PCBs was five (organic matter/lipids), and the lowest BSAFs (0.1,0.8) found were for octachlorodibenzo- p -dioxin. To our knowledge, accumulation of PBDEs in earthworms has not been published previously. [source]


Wasted fishery resources: discarded by-catch in the USA

FISH AND FISHERIES, Issue 4 2005
Jennie M Harrington
Abstract Fishery by-catch, especially discarded by-catch, is a serious problem in the world's oceans. Not only are the stocks of discarded species affected, but entire trophic webs and habitats may be disrupted at the ecosystem level. This paper reviews discarding in the marine fisheries of the USA; however, the type, diversity and regulatory mechanisms of the fisheries are similar to developed fisheries and management programmes throughout the world. We have compiled current estimates of discarded by-catch for each major marine fishery in the USA using estimates from existing literature, both published and unpublished. We did not re-estimate discards or discard rates from raw data, nor did we include data on protected species (turtles, mammals and birds) and so this study covers discarded by-catch of finfish and fishable invertebrates. For some fisheries, additional calculations were required to transform number data into weight data, and typically length and weight composition data were used. Specific data for each fishery are referenced in Harrington et al. (Wasted Resources: Bycatch and discards in US Fisheries, Oceana, Washington, DC, 2005). Overall, our compiled estimates are that 1.06 million tonnes of fish were discarded and 3.7 million tonnes of fish were landed in USA marine fisheries in 2002. This amounts to a nationwide discard to landings ratio of 0.28, amongst the highest in the world. Regionally, the southeast had the largest discard to landings ratio (0.59), followed closely by the highly migratory species fisheries (0.52) and the northeast fisheries (0.49). The Alaskan and west coast fisheries had the lowest ratios (0.12 and 0.15 respectively). Shrimp fisheries in the southeast were the major contributors to the high discard rate in that region, with discard ratios of 4.56 (Gulf of Mexico) and 2.95 (South Atlantic). By-catch and discarding is a major component of the impact of fisheries on marine ecosystems. There have been substantial efforts to reduce by-catch in some fisheries, but broadly based programmes covering all fisheries are needed within the USA and around the world. In response to international agreements to improve fishery management, by-catch and discard reduction must become a regular part of fishery management planning. [source]


Freshwater crayfish farming technology in the 1990s: a European and global perspective

FISH AND FISHERIES, Issue 4 2000
H.E.G. Ackefors
This paper aims to describe the state of crayfish farming technology in the USA, Australia and Europe, and to discuss some of the prerequisites for this industry. Data from Europe are partly based on replies from a questionnaire sent out to scientists in all European countries. For other parts of the world, the crayfish literature has been reviewed and data from the August 2000 meeting of the International Association of Astacology are also included. Issues addressed in this review are cultivated species, production and productivity figures, production technique with regard to enclosures, reproduction and feed items, disease problems, predators, pond vegetation and water quality. Fewer than a dozen crayfish species are cultivated. The most attractive ones for culture and stocking in natural waters have been transferred to more than one continent. Pond rearing techniques predominate in all countries, and the technology required to achieve the spawning and rearing of juveniles is relatively simple. Pieces of fish, carrots and potatoes are frequent supplementary feed items; plants, cereals, pieces of meat, zooplankton and pellets are also common. Diseases are not usually a major concern, except in Europe where the American plague fungus, Aphanomyces astaci, has eradicated many European crayfish populations. Predators identified as common include insects and amphibians, as well as fishes, birds and mammals. Many water macrophytes are common in crayfish farms. These may either serve a useful function or cause problems for the crayfish farmer. Water temperature is the crucial factor for crayfish production. Water parameters such as pH and certain inorganic ion concentrations may also be of concern. Acidic waters that occur in some areas are generally detrimental to crayfish. The total yield from crayfish production from farming and fishery is in the order of 120 000,150 000 tonnes, more than four times the quantity given by FAO statistics. The largest crayfish producer is the Peoples' Republic of China, followed by the USA (70 000 and 50 000 tonnes in 1999, respectively). Of the quantity produced in the USA in 1999, about 35 000 tonnes was farmed. The yield in Europe was about 4500 tonnes in 1994, and of this quantity only 160 tonnes came from aquaculture. There are no official statistics for crayfish fishery production in Australia, but about 400 tonnes came from aquaculture in 1999. [source]


Spawning habitat and daily egg production of sardine (Sardina pilchardus) in the eastern Mediterranean

FISHERIES OCEANOGRAPHY, Issue 4 2006
S. SOMARAKIS
Abstract Spawning habitats of two eastern Mediterranean sardine, Sardina pilchardus (Walbaum, 1792), stocks (coastal waters of central Aegean and Ionian Seas) are characterized from daily egg production method (DEPM) surveys conducted during the peak of the spawning period. The latter occurs earlier in the Aegean Sea (December) than in the less-productive Ionian Sea (February). Single-parameter quotient analysis showed that the preferred bottom depth for spawning was 40,90 m in both areas but sardine selected sites of increased zooplankton in the Aegean Sea during December and increased fluorescence in the Ionian Sea during February. Estimates of daily egg production (P) and spawning stock biomass (B) were about four times lower for the Ionian Sea (P = 7.81 eggs m,2, B = 3652 tonnes) than the Aegean Sea (P = 27.52 eggs m,2, B = 16 174 tonnes). We suggest that zooplankton biomass might not be sufficient to support sardine reproduction in the highly oligotrophic Ionian Sea where the very small sardine stock may rely on the late-winter phytoplankton bloom. Actively selecting sites with increased zooplankton or phytoplankton and feeding plasticity (the well-known switching from selective particle feeding to non-selective filter feeding in sardines) are interpreted as adaptations to grow and reproduce optimally at varying prey conditions. Despite differences in temperature and productivity regimes, reproductive performance of sardine in the Ionian Sea was very similar to that in the Aegean Sea during the peak of the spawning period. In comparing adult parameters from DEPM applications to Sardina and Sardinops stocks around the world, a highly significant linear relation emerged between mean batch fecundity (F) and mean weight of mature female (W, g) (F = 0.364W, r2 = 0.98). The latter implies that, during the peak of the spawning period, mean relative batch fecundity (eggs g,1) of sardine is fairly constant in contrasting ecosystems around the world. [source]


HYDROLOGY AND GEOMORPHIC EFFECTS OF A HIGH-MAGNITUDE FLOOD IN AN ALPINE RIVER

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 1 2007
DAVID MORCHE
ABSTRACT. The catchment of the River Partnach, a torrent situated in a glacial valley in the Northern Calcareous Alps of Bavaria/Germany, was affected by a high-magnitude flood on 22/23 August 2005 with a peak discharge of more than 16 m3s -1 at the spring and about 50 m3s -1 at the catchment outlet. This flood was caused by a long period of intense rainfall with a maximum intensity of 230 mm per day. During this event, a landslide dam, which previously held a small lake, failed. The flood wave originating from the dam breach transported a large volume of sediment (more than 50 000 m3) derived from bank erosion and the massive undercutting of a talus cone. This caused a fundamental transformation of the downstream channel system including the redistribution of large woody debris and channel switching. Using terrestrial survey and aerial photography, erosional and depositional consequences of the event were mapped, pre- and post-event surfaces were compared and the sediment budget of the event calculated for ten consecutive channel reaches downstream of the former lake. According to the calculations more than 100 000 tonnes of sediment were eroded, 75% of which was redeposited within the channel and the proximal floodplain. A previous large flood which occurred a few weeks prior to the August 2005 event had a significant effect on controlling the impact of this event. [source]


Cover Picture: Geomechanics and Tunnelling 5/2009

GEOMECHANICS AND TUNNELLING, Issue 5 2009
Article first published online: 24 SEP 200
High breakout force, excellent manoeuvrability and robust construction make Liebherr crawler loaders ideal for tunnel construction work. The current Generation 4 series of crawler loaders consists of three models that effectively cover the service weight range from 11 to 23 tonnes. They are powered by diesel engines with power ratings from 72 to 135 kW (see page 672,673). Hohe Losbrechkräfte, die gute Manövrierfähigkeit und der robuste Aufbau machen Liebherr-Laderaupen zu idealen Arbeitsmaschinen für den Tunnelbau. Die aktuelle Laderaupen-Baureihe der Generation 4 umfasst drei gut abgestimmte Modelle mit Einsatzgewichten zwischen 11 und 23 t und Antriebsleistungen von 72 bis 135 kW (siehe Seite 672,673). [source]


Carbon bio-sequestration within the phytoliths of economic bamboo species

GLOBAL CHANGE BIOLOGY, Issue 10 2010
JEFFREY PARR
Abstract The rates of carbon bio-sequestration within silica phytoliths of the leaf litter of 10 economically important bamboo species indicates that (a) there is considerable variation in the content of carbon occluded within the phytoliths (PhytOC) of the leaves between different bamboo species, (b) this variation does not appear to be directly related to the quantity of silica in the plant but rather the efficiency of carbon encapsulation by the silica. The PhytOC content of the species under the experimental conditions ranged from 1.6% to 4% of the leaf silica weight. The potential phytolith carbon bio-sequestration rates in the leaf-litter component for the bamboos ranged up to 0.7 tonnes of carbon dioxide (CO2) equivalents (t-e-CO2) ha,1 yr,1 for these species. Assuming a median phytolith carbon bio-sequestration yield of 0.36 t-e-CO2 ha,1 yr,1, the global potential for bio-sequestration via phytolith carbon (from bamboo and/or other similar grass crops) is estimated to be ,1.5 billion t-e-CO2 yr,1, equivalent to 11% of the current increase in atmospheric CO2. The data indicate that the management of vegetation such as bamboo forests to maximize the production of PhytOC has the potential to result in considerable quantities of securely bio-sequestered carbon. [source]


Yield and stability of yield of single- and multi-clover grass-clover swards in two contrasting temperate environments

GRASS & FORAGE SCIENCE, Issue 3 2009
B. E. Frankow-Lindberg
Abstract Diversity of clovers in grass-clover swards may contribute to greater herbage yields and stability of yield. This possible effect was evaluated in an experiment carried out over three harvest years at two contrasting sites, differing in precipitation and soil composition, using mixed swards containing either one, two or three clover species sown together with timothy (Phleum pratense L.) and meadow fescue (Festuca pratensis L.). The clover species were red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and alsike clover (Trifolium hybridum L.) sown in various proportions in a total of ten treatments. All swards were fertilized with nitrogen with amounts that increased from year to year, and three harvests were taken in three consecutive years. There was a significant interaction between site and species mixture on total dry matter (DM) yields (range 27,32 tonnes ha,1) and DM yields of clovers (range 5,15 tonnes ha,1); red clover as a single species or in a mixture was superior at the dry site while multi-clover species mixtures were superior at the wet site. Alsike clover was the least productive species of clover. Stability of yield of clovers was generally higher by including white and red clover in the seed mixture but total DM yield was not. [source]


Climate change levy and its application within the dairy industry

INTERNATIONAL JOURNAL OF DAIRY TECHNOLOGY, Issue 2 2003
George S Plemper
The government's climate change levy on energy use in the nondomestic sector was announced in the March 1999 Budget and came into effect on 1 April 2001. During 1990 it is estimated that 603 million tonnes of carbon dioxide contributed to 79% of the UK's greenhouse gas emissions. Nationally, energy consumption within the dairy industry contributes to only 0.2% of the UK's annual emissions of carbon dioxide and climate change levy agreements throughout the industry are unlikely to have a major impact on the government's Climate Change Programme. Paradoxically, the arrangements that dairies are required to put into place as part of their Climate Change Agreements are of paramount importance for the achievement of operational and process efficiency within the dairy sector. [source]


The suitability of muscle of Cirrhinus mrigala in the formation of gel: a comparative electrophoretic study of six tropical carp meats

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 1 2008
Rupsankar Chakrabarti
Summary The annual inland fish production in India is 3.2 million tonnes and above. Aquaculture is around 80% of total inland fish production. The enhanced aquaculture production demands alternate processing methods for better utilisation of the farmed fish. Cirrhinus mrigala is one of the dominated species among cultured Indian major carps, but rated with lowest price. Fish meat with good gel-forming capacity is a prerequisite in the production of fast-moving fabricated analogue product. Cirrhinus mrigala had the highest gel strength, i.e. 435 gcm of its fresh meat in comparison with other carps. Apart from the highest protein and salt-soluble protein nitrogen content in fresh C. mrigala meat, this article also reports that the presence of the darkest thick band of myosin heavy chain and actin in the polyacrylamide gel electrophoresis pattern of salt-soluble extract of C. mrigala might be another possible reason for the highest gel strength in comparison with other carps. Cirrhinus mrigala contained white meat around 90%. This carp could be suitably used in the preparation of high-valued fabricated analogue product. [source]


Economic Impacts of Technology, Population Growth And Soil Erosion At Watershed Level: The Case Of the Ginchi in Ethiopia

JOURNAL OF AGRICULTURAL ECONOMICS, Issue 3 2004
B.N. Okumu
A dynamic bio-economic model is used to show that, without technological and policy intervention, soil loss levels, income and nutrition could not be substantially or sustainably improved in a highland area of Ethiopia. Although cash incomes could rise by more than 40% over a twelve-year planning period, average per ha soil losses could be as high as 31 tonnes per ha. With the adoption of an integrated package of new technologies, however, results show the possibility of an average two-and-a-half-fold increase in cash incomes and a 28% decline in aggregate erosion levels even with a population growth rate of 2.3%. Moreover, a minimum daily calorie intake of 2000 per adult equivalent could be met from on-farm production with no significant increases in erosion. However, higher rates of growth in nutritional requirements and population introduce significant strains on the watershed system. From a policy perspective, there is a need for a more secure land tenure policy than currently prevailing to facilitate uptake of the new technology package, and a shift from the current livestock management strategy to one that encourages livestock keeping as a commercial enterprise. It would also imply a shift to a more site-specific approach to land management. [source]


Current issues with fish and fisheries: editor's overview and introduction

JOURNAL OF APPLIED ECOLOGY, Issue 2 2003
S. J. Ormerod
Summary 1.,By any measure, fishes are among the world's most important natural resources. Annual exploitation from wild populations exceeds 90 million tonnes, and fish supply over 15% of global protein needs as part of total annual trade exceeding $US 55 billion. Additionally, with over 25 000 known species, the biodiversity and ecological roles of fishes are being increasingly recognised in aquatic conservation, ecosystem management, restoration and aquatic environmental regulation. 2.,At the same time, substantial management problems now affect the production, exploitable stocks, global diversity, trophic structure, habitat quality and local composition of fish communities. 3.,In marine systems, key issues include the direct effects of exploitation on fish, habitats and other organisms, while habitat or water quality problems arise also from the atmospheric, terrestrial and coastal environments to which marine systems are linked. In freshwaters, flow regulation and obstruction by dams, fragmentation, catchment management, pollution, habitat alterations, exotic fish introductions and nursery-reared fish are widespread issues. 4.,Management responses to the problems of fish and fisheries include aquatic reserves in both marine and freshwater habitats, and their effectiveness is now being evaluated. Policies on marine exploitation increasingly emphasise fishes as integral components of aquatic ecosystems rather than individually exploitable stocks, but the rationalisation of fishing pressures presents many challenges. In Europe, North America and elsewhere, policies on freshwaters encourage habitat protection, integrated watershed management and restoration, but pressures on water resources will cause continued change. All these management approaches require development and evaluation, and will benefit from a perspective of ecological understanding with ecologists fully involved. 5.,Synthesis and applications. Although making a small contribution to the Journal of Applied Ecology in the past, leading work on aquatic problems and fish-related themes appear increasingly in this and other mainstream ecology journals. As this special profile of five papers shows, significant contributions arise on diverse issues that here include the benefit of aquatic reserves, river restoration for fish, the accumulation of contaminants, interactions with predators, and the fitness of salmonids from nurseries. This overview outlines the current context in which papers on the applied ecology of fish and fisheries are emerging, and it identifies scope for further contributions. [source]


Estimating food consumption of marine predators: Antarctic fur seals and macaroni penguins

JOURNAL OF APPLIED ECOLOGY, Issue 1 2002
I.L. Boyd
Summary 1Estimating food consumption is central to defining the ecological role of marine predators. This study developed an algorithm for synthesizing information about physiology, metabolism, growth, diet, life history and the activity budgets of marine predators to estimate population energy requirements and food consumption. 2Two species of marine predators (Antarctic fur seal Arctocephalus gazella and macaroni penguin Eudyptes chrsolophus) that feed on krill in the Southern Ocean were used as examples to test the algorithm. A sensitivity analysis showed that estimates of prey consumed were most sensitive to uncertainty in some demographic variables, particularly the annual survival rate and total offspring production. Uncertainty in the measurement of metabolic rate led to a positive bias in the mean amount of food consumed. Uncertainty in most other variables had little influence on the estimated food consumed. 3Assuming a diet mainly of krill Euphausia superba, annual food consumption by Antarctic fur seals and macaroni penguins at the island of South Georgia was 3·84 [coefficient of variation (CV) = 0·11] and 8·08 (CV = 0·23) million tonnes, respectively. This was equivalent to a total annual carbon consumption of 0·35 (CV = 0·11) and 0·72 (CV = 0·23) G tonnes year,1. Carbon expired as CO2 was 0·26 (CV = 0·06) and 0·65 (CV = 0·19) G tonnes year,1 for fur seals and macaroni penguins, respectively. The per capita food consumption varied depending upon sex and age but, overall, this was 1·7 (CV = 0·22) tonnes year,1 for Antarctic fur seals and 0·45 (CV = 0·22) tonnes year,1 for macaroni penguins. 4The algorithm showed that the seasonal demand for food peaked in both species in the second half of the breeding season and, for macaroni penguins, there was a second peak immediately after moult. Minimum food demand occurred in both species during the first half of the breeding season. 5As both Antarctic fur seals and macaroni penguins compete for krill with a commercial fishery, these results provide an insight into the seasons and stages of the life cycle in which competition is likely to be greatest. [source]


Population structure, growth, mortality and estimated stock size of the introduced tench, Tinca tinca (L.), population in Lake Bey,ehir, Turkey

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 2 2009
. Bal
Summary Population structure, growth, length,weight relationship, mortality and stock size of tench, Tinca tinca (L.), was studied in Lake Bey,ehir, Turkey in 2005. Totals of 3360 tench (1865 males; 1795 females) were captured with gill- and trammel-nets of various mesh sizes. Male to female ratio was 1.04 : 1. The study covered length year classes. Fork lengths and total weights ranged from 9 to 37 cm and 13 to 815 g. For all individuals, the von Bertalanffy growth equation and length,weight relationship were Lt = 54.2[1,exp(,0.1350(t + 1.0281)] and W = 0.0151 L2.9993, respectively. Growth performance index and mean condition factor of the tench population were 2.598 and 1.513, respectively. Mortality rates were Z = 1.97 year,1, M = 0.29 year,1 and F = 1.68 year,1 for total, natural, and fishing mortality, respectively. The exploitation rate was E = 0.85, and the percentage of surviving fish was 13.9%. Tench stock was assessed as about 6,7 million individuals and 1450,1500 tonnes in biomass. It was determined that maximum sustainable yield could be obtained with an 80% level of the current fishing effort. [source]


Monitoring and regulation of marine aquaculture in Denmark

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 4-5 2000
P. B. Pedersen
Summary Marine fish farming in Denmark is completely dominated by the farming of large rainbow trout (Oncorhynchus mykiss) of 2,5 kg/piece in net cages or land-based flow-through systems, even though more species are being farmed on a small scale. The Danish production of rainbow trout in sea water reached some 8500 tonnes in 1998, and is unlikely to increase due to new restrictions imposed by the Ministry of Environment and Energy, including a provisional stop for extensions and new establishments. This prohibition was put in force in spite the fact that overall outlets are well below the frame allocated for marine fish farming. Generally, the procedures for obtaining allowances are complicated, involving regional and national institutions as well as public hearings. The procedures are described in this article. [source]