Titration Experiments (titration + experiment)

Distribution by Scientific Domains

Kinds of Titration Experiments

  • nmr titration experiment


  • Selected Abstracts


    Peptide Recognition: Encapsulation and ,-Helical Folding of a Nine-Residue Peptide within a Hydrophobic Dimeric Capsule of a Bowl-Shaped Host

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 12 2006
    Shohei Tashiro
    Abstract A dimeric capsule of coordination bowl 1 encapsulated a nine-residue peptide (Trp-Ala-Glu-Ala-Ala-Ala-Glu-Ala-Trp; 2) within the large hydrophobic cavity in water, and stabilized the ,-helical conformation of bound 2. An NMR titration experiment revealed that monomeric bowl 1 recognized two Trp residues at the both terminals of 2 through 1/2=1:1 to 2:1 complexation. The 1:1 and 2:1 species exist in equilibrium even in the presence of excess 1. It was found that the formation of the 2:1 complex, in which two bowls of 1 wrapped the whole of 2, became dominant by the addition of NaNO3 due to the fact that the enhanced ion strength increased the hydrophobic interaction between Trp residues and the cavity of 1. The ,-helical conformation of 2 within the dimeric capsule of 1 was elucidated from detailed NOESY analysis. [source]


    Efficient Increase of DNA Cleavage Activity of a Diiron(III) Complex by a Conjugating Acridine Group

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 34 2007
    Xiao-Qiang Chen
    Abstract A new diferric complex, Fe2Lb, in which a DNA intercalator (acridine) is linked to a precursor diferric complex (Fe2La), has been designed and synthesised as a hydrolytic cleaving agent of DNA. Compared with Fe2La (without the DNA intercalator) (La: 2,6-bis{[(2-hydroxybenzyl)(pyridin-2-yl)methylamino]methyl}-4-methylphenol), Fe2Lb [Lb: 5-(acridin-9-yl)- N -(3,5-bis{[(2-hydroxybenzyl)(pyridin-2-yl)methylamino]methyl}-4-hydroxybenzyl)pentanamide] leads to a 14-fold increase in the cleavage efficiency of plasmid DNA due to the binding interaction between DNA and the acridine moiety. The interaction has been demonstrated by UV/Vis absorption, CD spectroscopy, viscidity experiments and thermal denaturation studies. The hydrolytic mechanism is supported by evidence from T4 DNA ligase assay, reactive oxygen species (ROS) quenching and BNPP [bis(4-nitrophenyl) phosphate, a DNA model] cleavage experiments. The pH dependence of the BNPP cleavage by Fe2La in aqueous buffer media shows a bell-shaped pH,kobs profile with an optimum point around a pH of 7.0 which is in good agreement with the maximum point of the pH-dependent relative concentration curve of active species from the pH titration experiments. The determination of the initial rates at a pH of 7.36 as a function of substrate concentration reveals saturation kinetics with Michaelis,Menten-like behaviour and Fe2La shows a rate acceleration increase of 4.7,×,106 times in the hydrolysis of BNPP. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


    Metal Ion Complementarity: Effect of Ring-Size Variation on the Conformation and Stability of Lead(II) and Cadmium(II) Complexes with Pendant-Armed Crowns

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 15 2007
    Martín Regueiro-Figueroa
    Abstract The binding tendencies of the pendant-armed crown ethers L1,L3 [L1 = N,N, -bis(benzimidazol-2-ylmethyl)-1,7-diaza-12-crown-4, L2 = N,N, -bis(benzimidazol-2-ylmethyl)-1,10-diaza-15-crown-5) and L3 = N,N, -bis(benzimidazol-2-ylmethyl)-4,13-diaza-18-crown-6] towards PbII and CdII have been investigated. The X-ray crystal structure of [Cd(L3)](ClO4)2·EtOH shows that, in the solid state, the CdII ion is eight-coordinate and fits quite well into the crown hole, favouring an anti arrangement of the organic receptor. NMR measurements recorded in acetonitrile solution indicate that increasing the crown size induces a conformational change in the series of CdII complexes. The conformation goes from a syn arrangement for L1 to an anti arrangement for L3, passing through a syn [lrarr2] anti equilibrium in the complex derived from L2. On the contrary, no conformational change was observed for the corresponding PbII complexes, which have a syn conformation in all cases. These results have been confirmed by means of density functional theory (DFT) calculations performed by using the B3LYP model. The binding constants obtained from UV/Vis titration experiments in DMSO solution demonstrate that a decrease in the crown size provokes a 102 -fold enhancement of the stability for this series of CdII complexes, whereas for PbII a gradual decrease of the binding constants is observed. Receptor L1 shows a certain degree of selectivity for CdII over PbII, with a selectivity factor > 102. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


    Biological activity of RE-1 silencing transcription factor (REST) towards distinct transcriptional activators

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2001
    Michael Lietz
    Abstract The zinc finger protein RE-1 silencing transcription factor (REST) is a transcriptional repressor that represses neuronal genes in non-neuronal tissues. We have analyzed the ability of REST and the REST mutants, REST,N and REST,C lacking either the N-terminal or C-terminal repression domains of REST, to inhibit transcription mediated by distinct transcriptional activator proteins. For this purpose we have designed an activator specific assay where transcription is activated as a result of only one distinct activation domain. In addition, binding sites for REST were inserted in the 5,-untranslated region or at a distant position downstream of the polyadenylation signal. The results show that REST or the REST mutants containing only one repression domain were able to block transcriptional activation mediated by the transcriptional activation domains derived from p53, AP2, Egr-1, and GAL4. Moreover, REST, as well as the REST mutants, blocked the activity of the phosphorylation-dependent activation domain of Elk1. However, the activity of the activation domain derived from cAMP response element binding protein 2 (CREB2), was not inhibited by REST, REST,N or REST,C, suggesting that REST is able to distinguish between distinct transcriptional activation domains. Additionally, the activator specific assay, together with a positive-dominant mutant of REST that activated instead of repressed transcription, was used in titration experiments to show that REST has transcriptional repression and no transcriptional activation properties when bound to the 5,-untranslated region of a gene. [source]


    Mouse recombinant protein C variants with enhanced membrane affinity and hyper-anticoagulant activity in mouse plasma

    FEBS JOURNAL, Issue 22 2009
    Michael J. Krisinger
    Mouse anticoagulant protein C (461 residues) shares 69% sequence identity with its human ortholog. Interspecies experiments suggest that there is an incompatibility between mouse and human protein C, such that human protein C does not function efficiently in mouse plasma, nor does mouse protein C function efficiently in human plasma. Previously, we described a series of human activated protein C (APC) Gla domain mutants (e.g. QGNSEDY-APC), with enhanced membrane affinity that also served as superior anticoagulants. To characterize these Gla mutants further in mouse models of diseases, the analogous mutations were now made in mouse protein C. In total, seven mutants (mutated at one or more of positions P10S12D23Q32N33) and wild-type protein C were expressed and purified to homogeneity. In a surface plasmon resonance-based membrane-binding assay, several high affinity protein C mutants were identified. In Ca2+ titration experiments, the high affinity variants had a significantly reduced (four-fold) Ca2+ requirement for half-maximum binding. In a tissue factor-initiated thrombin generation assay using mouse plasma, all mouse APC variants, including wild-type, could completely inhibit thrombin generation; however, one of the variants denoted mutant III (P10Q/S12N/D23S/Q32E/N33D) was found to be a 30- to 50-fold better anticoagulant compared to the wild-type protein. This mouse APC variant will be attractive to use in mouse models aiming to elucidate the in vivo effects of APC variants with enhanced anticoagulant activity. [source]


    Ag+ selection by aza-18-crown-6 ethers N -Substituted on heterocyclic aromatics ,,

    JOURNAL OF HETEROCYCLIC CHEMISTRY, Issue 2 2005
    Kiyoshi Matsumoto
    Substitution on the nitrogen atom, where necessary by high-pressure SNAr reactions, of aza-18-crown-6 ethers linked to heterocyclic aromatics has extended the number of potential host compounds for Ag+. The complexation of Ag+ by the new compounds has been evaluated by liquid membrane ion transport and ion extraction experiments. The nature of the binding sites of these new host compounds for Ag+ has been assessed, in DMF/D2O (4/1), by 13C nmr titration experiments with AgClO4. [source]


    Modeling l-dopa purification by chiral ligand-exchange chromatography

    AICHE JOURNAL, Issue 3 2007
    Nooshafarin Sanaie
    Abstract A model describing elution-band profiles that combines multiple chemical equilibria theory with the nonideal equilibrium,dispersion equation for solute transport is used to predict and characterize the separation of l,d-dopa by chiral ligand-exchange chromatography (CLEC). Formation constants and stoichiometries for all equilibrium complexes formed in the interstitial volume and pore liquid are taken from standard thermodynamic databases and independent potentiometric titration experiments. Formation constants for complexes formed with the stationary phase ligand (N-octyl-3-octylthio-d-valine) are determined from potentiometric titration data for a water-soluble analogue of the ligand. This set of pure thermodynamic parameters is used to calculate the spatially discretized composition of each column volume element as a function of time. The model includes a temperature-dependent pure-component parameter, determined by regression to a single elution band for the pure component, that corrects for subtle effects associated with immobilizing the N-octyl-3-octylthio-d-valine ligand onto the stationary phase. The model is shown to accurately predict elution chromatograms and separation performance as a function of key column operating variables. The model is then used to better understand the connection between chemical equilibria within the system and changes in band profiles and band separation resulting from changes in column operating conditions. © 2007 American Institute of Chemical Engineers AIChE J, 2007 [source]


    Study of carvedilol by combined Raman spectroscopy and ab initio MO calculations

    JOURNAL OF RAMAN SPECTROSCOPY, Issue 10 2002
    M. P. M. Marques
    The novel cardioprotective drug carvedilol was studied by both Raman spectroscopy and ab initio molecular orbital methods (using the density functional theory approach). The spectra, acquired both for the solid samples and DMSO solutions as a function of pH, were assigned in view of the calculated wavenumbers and intensities, and also based on the experimental data obtained for individual compounds which comprise the molecule, namely carbazole and 1,2-dimethoxybenzene. The pH dependence of the Raman pattern of carvedilol was studied, and the pKa value of its secondary amine group was determined (pKa = 8.25) through pH titration experiments. This kind of information is of great significance for the understanding of the biochemical role of carvedilol, which is strongly determined by the acid,base behaviour of the molecule. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    A solid-state 23Na NMR study of monovalent cation binding to double-stranded DNA at low relative humidity

    MAGNETIC RESONANCE IN CHEMISTRY, Issue 4 2008
    Alan Wong
    Abstract We report a solid-state 23Na NMR study of monovalent cation (Li+, Na+, K+, Rb+, Cs+ and NH4+) binding to double-stranded calf thymus DNA (CT DNA) at low relative humidity, ca 0,10%. Results from 23Na31P rotational echo double resonance (REDOR) NMR experiments firmly establish that, at low relative humidity, monovalent cations are directly bound to the phosphate group of CT DNA and are partially dehydrated. On the basis of solid-state 23Na NMR titration experiments, we obtain quantitative thermodynamic parameters concerning the cation-binding affinity for the phosphate group of CT DNA. The free energy difference (,G° ) between M+ and Na+ ions is as follows: Li+ (,1.0 kcal mol,1), K+ (7.2 kcal mol,1), NH4+ (1.0 kcal mol,1), Rb+ (4.5 kcal mol,1) and Cs+ (1.5 kcal mol,1). These results suggest that, at low relative humidity, the binding affinity of monovalent cations for the phosphate group of CT DNA follows the order: Li+ > Na+ > NH4+ > Cs+ > Rb+ > K+. This sequence is drastically different from that observed for CT DNA in solution. This discrepancy is attributed to the different modes of cation binding in dry and wet states of DNA. In the wet state of DNA, cations are fully hydrated. Our results suggest that the free energy balance between direct cation,phosphate contact and dehydration interactions is important. The reported experimental results on relative ion-binding affinity for the DNA backbone may be used for testing theoretical treatment of cation-phosphate interactions in DNA. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Fourier transform infrared spectroscopic study on the binding of Mg2+ to a mutant Akazara scallop troponin C (E142Q)

    BIOPOLYMERS, Issue 1-2 2004
    Masayuki Nara
    Abstract Troponin C (TnC) is the Ca2+ -binding regulatory protein of the troponin complex in muscle tissue. Vertebrate fast skeletal muscle TnCs bind four Ca2+, while Akazara scallop (Chlamys nipponensis akazara) striated adductor muscle TnC binds only one Ca2+ at site IV, because all the other EF-hand motifs are short of critical residues for the coordination of Ca2+. Fourier transform infrared (FTIR) spectroscopy was applied to study coordination structure of Mg2+ bound in a mutant Akazara scallop TnC (E142Q) in D2O solution. The result showed that the side-chain COO, groups of Asp 131 and Asp 133 in the Ca2+ -binding site of E142Q bind to Mg2+ in the pseudo-bridging mode. Mg2+ titration experiments for E142Q and the wild-type of Akazara scallop TnC were performed by monitoring the band at about 1600 cm,1, which is due to the pseudo-bridging Asp COO, groups. As a result, the binding constants of them for Mg2+ were the same value (about 6 mM). Therefore, it was concluded that the side-chain COO, group of Glu 142 of the wild type has no relation to the Mg2+ ligation. The effect of Mg2+ binding in E142Q was also investigated by CD and fluorescence spectroscopy. The on,off mechanism of the activation of Akazara scallop TnC is discussed on the basis of the coordination structures of Mg2+ as well as Ca2+. © 2004 Wiley Periodicals, Inc. Biopolymers, 2004 [source]


    Ortho-aminobenzoic acid-labeled bradykinins in interaction with lipid vesicles: Fluorescence study

    BIOPOLYMERS, Issue 5 2002
    R. F. Turchiello
    Abstract The peptide hormone bradykinin (BK) (Arg1 -Pro2 -Pro3 -Gly4 -Phe5 -Ser6 -Pro7 -Phe8 -Arg9) and its shorter homolog BK1,5 (Arg1 -Pro2 -Pro3 -Gly4 -Phe5) were labeled with the extrinsic fluorescent probe ortho -aminobenzoic acid (Abz) bound to the N-terminal and amidated in the C-terminal carboxyl group (Abz-BK-NH2 and Abz-BK1,5 -NH2). The fragment des-Arg9 -BK was synthesized with the Abz fluorescent probe attached to the 3-amino group of 2,3-amino propionic acid (DAP), which positioned the Abz group at the C-terminal side of BK sequence, constituting the peptide des-Arg9 -BK-DAP(Abz)-NH2. The spectral characteristics of the probe were similar in the three peptides, and their fluorescent properties were monitored to study the interaction of the peptides with anionic vesicles of dimyristoylphosphatidylglycerol (DMPG). Time-resolved fluorescence experiments showed that the fluorescence decay of the peptides was best described by double-exponential kinetics, with mean lifetimes values around 8.0 ns in buffer pH 7.4 that increased about 10% in the presence of DMPG vesicles. About a 10-fold increase, compared with the values in aqueous solution, was observed in the steady-state anisotropy in the presence of vesicles. A similar increase was also observed for the rotational correlation times obtained from time-resolved anisotropy decay profiles, and related to the overall tumbling of the peptides. Equilibrium binding constants for the peptide,lipid interaction were examined monitoring anisotropy values in titration experiments and the electrostatic effects were evaluated through Gouy,Chapman potential calculations. Without corrections for electrostatic effects, the labeled fragment Abz-BK1,5 -NH2 presented the major affinity for DMPG vesicles. Corrections for the changes in peptide concentration due to electrostatic interactions suggested higher affinity of the BK fragments to the hydrophobic phase of the bilayer. © 2002 Wiley Periodicals, Inc. Biopolymers 65: 336,346, 2002 [source]


    Stabilization of G-Quadruplex DNA with Platinum(II) Schiff Base Complexes: Luminescent Probe and Down-Regulation of c- myc Oncogene Expression

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 47 2009
    Peng Wu Dr.
    Abstract The interactions of a series of platinum(II) Schiff base complexes with c- myc G-quadruplex DNA were studied. Complex [PtL1a] (1,a; H2L1a=N,N,-bis(salicylidene)-4,5-methoxy-1,2-phenylenediamine) can moderately inhibit c- myc gene promoter activity in a cell-free system through stabilizing the G-quadruplex structure and can inhibit c- myc oncogene expression in cultured cells. The interaction between 1,a and G-quadruplex DNA has been examined by 1H NMR spectroscopy. By using computer-aided structure-based drug design for hit-to-lead optimization, an in silico G-quadruplex DNA model has been constructed for docking-based virtual screening to develop new platinum(II) Schiff base complexes with improved inhibitory activities. Complex [PtL3] (3; H2L3=N,N,-bis{4-[1-(2-propylpiperidine)oxy]salicylidene}-4,5-methoxy-1,2-phenylenediamine) has been identified with a top score in the virtual screening. This complex was subsequently prepared and experimentally tested in vitro for its ability to stabilize or induce the formation of the c -myc G-quadruplex. The inhibitory activity of 3 (IC50=4.4,,M) is tenfold more than that of 1,a. The interaction between 1,a or 3 with c- myc G-quadruplex DNA has been examined by absorption titration, emission titration, molecular modeling, and NMR titration experiments, thus revealing that both 1,a and 3 bind c- myc G-quadruplex DNA through an external end-stacking mode at the 3' terminal face of the G-quadruplex. Such binding of G-quadruplex DNA with 3 is accompanied by up to an eightfold increase in the intensity of photoluminescence at ,max=652,nm. Complex 3 also effectively down-regulated the expression of c- myc in human hepatocarcinoma cells. [source]


    Nanosized Ball Joints Constructed from C60 and Tribenzotriquinacene Sockets: Synthesis, Component Self-Assembly and Structural Investigations

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 35 2007
    Björn Bredenkötter Dr.
    Abstract The formation of supramolecular host,guest complexes of fullerene (C60) and two novel tribenzotriquinacene based hosts (5,a and 5,b) was investigated in solution and in the solid state. Stability constants for 1:1 and 2:1 complexes were obtained from spectroscopic (UV/Vis, 1H,NMR) titration experiments. Association constants of K1=(2908±360),L,mol,1 and K2=(2076±300),L,mol,1 for C60/5,a, and K1=(5608±220),L,mol,1 and K2=(673±160),L,mol,1 for C60/5,b were obtained. Single crystal X-ray structural analysis of compound C60,5,b,3,toluene revealed that a molecule of C60 was located at short van der Waals contact distances in the open pre-organised cavity of the rigid host. The supramolecular complex created resembles an engineered nanosized ball joint and represents the first member for a future nanomechanics construction kit. [source]