Time-consuming Task (time-consuming + task)

Distribution by Scientific Domains


Selected Abstracts


Detection of pollen grains in multifocal optical microscopy images of air samples

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 6 2009
Sander H. Landsmeer
Abstract Pollen is a major cause of allergy and monitoring pollen in the air is relevant for diagnostic purposes, development of pollen forecasts, and for biomedical and biological researches. Since counting airborne pollen is a time-consuming task and requires specialized personnel, an automated pollen counting system is desirable. In this article, we present a method for detecting pollen in multifocal optical microscopy images of air samples collected by a Burkard pollen sampler, as a first step in an automated pollen counting procedure. Both color and shape information was used to discriminate pollen grains from other airborne material in the images, such as fungal spores and dirt. A training set of 44 images from successive focal planes (stacks) was used to train the system in recognizing pollen color and for optimization. The performance of the system has been evaluated using a separate set of 17 image stacks containing 65 pollen grains, of which 86% was detected. The obtained precision of 61% can still be increased in the next step of classifying the different pollen in such a counting system. These results show that the detection of pollen is feasible in images from a pollen sampler collecting ambient air. This first step in automated pollen detection may form a reliable basis for an automated pollen counting system. Microsc. Res. Tech., 2009. © 2009 Wiley-Liss, Inc. [source]


Proteomics integrated with Escherichia coli vector-based vaccines and antigen microarrays reveals the immunogenicity of a surface sialidase-like protein of Propionibacterium acnes

PROTEOMICS - CLINICAL APPLICATIONS, Issue 9 2008
Cheng-Po Huang
Abstract Proteomics is a powerful tool for the identification of proteins, which provides a basis for rational vaccine design. However, it is still a highly technical and time-consuming task to examine a protein's immunogenicity utilizing traditional approaches. Here, we present a platform for effectively evaluating protein immunogenicity and antibody detection. A tetanus toxin C fragment (Tet-c) was used as a representative antigen to establish this platform. A cell wall-anchoring sialidase-like protein (SLP) of Propionibacterium acnes was utilized to assess the efficacy of this platform. We constructed an Escherichia coli vector-based vaccine by overexpressing Tet-c or SLP in E. coli and utilized an intact particle of E. coli itself as a vaccine (E. coli Tet-c or SLP vector). After ultraviolet (UV) irradiation, the E. coli vector-based vaccines were administered intranasally into imprinting control region mice without adding exogenous adjuvants. For antibody detection, we fabricated antigen microarrays by printing with purified recombinant proteins including Tet-c and SLP. Our results demonstrated that detectable antibodies were elicited in mice 6,weeks after intranasal administration of UV-irradiated E. coli vector-based vaccines. The antibody production of Tet-c and SLP was significantly elevated after boosting. Notably, the platform with main benefits of using E. coli itself as a vaccine carrier provides a critical template for applied proteomics aimed at screening novel vaccine targets. In addition, the novel immunogenic SLP potentially serves as an antigen candidate for the development of vaccines targeting P. acnes -associated diseases. [source]


In this issue: Biotechnology Journal 8/2010

BIOTECHNOLOGY JOURNAL, Issue 8 2010
Article first published online: 12 AUG 2010
Biocatalyst microemulsions Pavlidis et al., Biotechnol. J. 2010, 5, 805,812 Enzymes maintain their catalytic activity when hosted in aqueous nanodroplets like reverse micelles. Researchers from Ioannina, Greece, propose the use of water-in-ionic liquid microemulsionbased organogels (w/IL MBGs) as novel supports for the immobilization of lipase B from Candida antarctica and lipase from Chromobacterium viscosum. These novel lipase-containing w/IL MBGs can be effectively used as solid phase biocatalysts in various polar and non-polar organic solvents or ILs, exhibiting up to 4.4-fold higher esterification activity compared to water-in-oil microemulsion-based organogels. The immobilized lipases retain their activity for several hours at 70°C, while their half life time is up to 25-fold higher compared to that observed in w/IL microemulsions Biocatalyst cryogelation Bieler et al., Biotechnol. J. 2010, 5, 881,885 Entrapment of biocatalysts in hydrogel beads allows stable operation in otherwise deteriorating solvents. Doing this by cryogelation is a gentle method to extend the scope of biocatalysis. To foster the use of this versatile method, researchers from Aachen, Germany, devised an automated injector for the production of PVA/PEG-enzyme immobilisates. The device consists of a thermostated reservoir connected to a programmable injector nozzle and an agitated receiving bath for the droplets. This lab-scale production unit yields up to 1500 beads with immobilized enzyme per minute with a narrow size distribution and good roundness. Biocatalyst membrane reactor Lyagin et al., Biotechnol. J. 2010, 5, 813,821 Screening of biocatalysts, substrates or conditions in the early stages of bioprocess development requires an enormous number of experiments and is a tedious, expensive and time-consuming task. Currently available screening systems can only be operated in batch or fed-batch mode, which can lead to severe misinterpretations of screening results. Researchers from Berlin, Germany, now developed a novel screening system that enables continuous feeding of substrates and continuous removal of products. A prototype based on the membrane reactor concept was designed and operated for a model reaction, the hydrolysis of cellulose. [source]


Continuous screening system for inhibited enzyme catalysis: A membrane reactor approach

BIOTECHNOLOGY JOURNAL, Issue 8 2010
Evgenij Lyagin
Abstract The screening of catalysts, substrates or conditions in the early stages of bioprocess development requires an enormous number of experiments and is a tedious, expensive and time-consuming task. Currently available screening systems can only be operated in batch or fed-batch mode, which can lead to severe misinterpretations of screening results. For example, catalysts that are inhibited by substrates or accumulating products will be excluded from further investigations in the early stages of process development despite the fact that they might be superior to other candidates in a different operational mode. Important and advantageous properties such as turnover stability can also be overshadowed by product inhibition. The aim of this study was to develop a novel screening system that enables continuous feeding of substrates and continuous removal of products. A prototype based on the membrane reactor concept was designed and operated for a model reaction, the hydrolysis of cellulose. [source]


Applying Near-Infrared Spectroscopy in Downstream Processing: One Calibration for Multiple Clarification Processes of Fermentation Media

BIOTECHNOLOGY PROGRESS, Issue 2 2008
Licínia O. Rodrigues
The use of near-infrared spectroscopy (NIRS) is demonstrated in the first downstream processing (DSP) steps of an active pharmaceutical ingredient (API) manufacturing process. The first method developed was designed to assess the API content in the filtrate stream (aqueous) of a rotary drum vacuum filter. The PLS method, built after spectral preprocessing and variable selection, had an accuracy of 0.01% (w/w) for an API operational range between 0.20 and 0.45% (w/w). The robustness and extrapolation ability of the calibration was proved when samples from ultrafiltration and nanofiltration processes, ranging from 0 to 2% (w/w), were linearly predicted ( R2=0.99). The development of a robust calibration model is generally a very time-consuming task, and once established it is imperative that it can be useful for a long period of time. This work demonstrates that NIR procedures, when carefully developed, can be used in different process conditions and even in different process steps of similar unit operations. [source]


Estimation of Reliable Parameters for Solid-Liquid Equilibrium Description of Chiral Systems

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 5 2010
H. Haida
Abstract The knowledge of accurate solid-liquid phase equilibria serves in general as a strong basis for the design of any crystallization process. The available database is often limited and the experimental determination of necessary and reliable thermodynamic data is a tedious and time-consuming task. In this study, the predictive power of a multi-component gE model fed with limited experimental data was evaluated. Hereby, the impact of uncertainties in the underlying experimental data and the obtained model parameters was of particular interest. Statistical methods were used in order to extend the knowledge about the reliability of the model correlation and to evaluate its predictive characteristics. Therefore, binary and ternary phase equilibria for the system methionine/water were taken from the literature, and analyzed. [source]