Tissue Specific Expression (tissue + specific_expression)

Distribution by Scientific Domains


Selected Abstracts


Effect of Osteoblast-Targeted Expression of Bcl-2 in Bone: Differential Response in Male and Female Mice,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2005
Alexander G Pantschenko
Abstract Transgenic mice (Col2.3Bcl-2) with osteoblast-targeted human Bcl-2 expression were established. Phenotypically, these mice were smaller than their wildtype littermates and showed differential effects of the transgene on bone parameters and osteoblast activity dependent on sex. The net effect was an abrogation of sex differences normally observed in wildtype mice and an inhibition of bone loss with age. Ex vivo osteoblast cultures showed that the transgene had no effect on osteoblast proliferation, but decreased bone formation. Estrogen was shown to stimulate endogenous Bcl-2 message levels. These studies suggest a link between Bcl-2 and sex regulation of bone development and age-related bone loss. Introduction: Whereas Bcl-2 has been shown to be an important regulator of apoptosis in development, differentiation, and disease, its role in bone homeostasis and development is not well understood. We have previously showed that the induction of glucocorticoid-induced apoptosis occurred through a dose-dependent decrease in Bcl-2. Estrogen prevented glucocorticoid-induced osteoblast apoptosis in vivo and in vitro by preventing the decrease in Bcl-2 in osteoblasts. Therefore, Bcl-2 may be an important regulator of bone growth through mechanisms that control osteoblast longevity and function. Materials and Methods: Col2.3Bcl-2 mice were developed carrying a 2.3-kb region of the type I collagen promoter driving 1.8 kb of human Bcl-2 (hBcl-2). Tissue specific expression of hBcl-2 in immunoassays validated the transgenic animal model. Histomorphometry and DXA were performed. Proliferation, mineralization, and glucocorticoid-induced apoptosis were examined in ex vivo cultures of osteoblasts. The effect of estrogen on mouse Bcl-2 in ex vivo osteoblast cultures was assayed by RT-PCR and Q-PCR. Results and Conclusions: Two Col2.3Bcl-2 (tg/+) founder lines were established and appeared normal except that they were smaller than their nontransgenic wildtype (+/+) littermates at 1, 2, and 6 months of age, with the greatest differences at 2 months. Immunohistochemistry showed hBcl-2 in osteoblasts at the growth plate and cortical surfaces. Nontransgenic littermates were negative. Western blots revealed hBcl-2 only in type I collagen-expressing tissues. Histomorphometry of 2-month-old mice showed a significant decrease in tg/+ calvaria width with no significant differences in femoral trabecular area or cortical width compared with +/+. However, tg/+ males had significantly more trabecular bone than tg/+ females. Female +/+ mice showed increased bone turnover with elevated osteoblast and osteoclast parameters compared with +/+ males. Col2.3Bcl-2 mice did not show such significant differences between sexes. Male tg/+ mice had a 76.5 ± 1.5% increase in ObS/BS with no significant differences in bone formation rate (BFR) or mineral apposition rate (MAR) compared with male +/+ mice. Transgenic females had a significant 48.4 ± 0.1% and 20.1 ± 5.8% decrease in BFR and MAR, respectively, compared with +/+ females. Osteoclast and osteocyte parameters were unchanged. By 6 months, femurs from female and male +/+ mice had lost a significant amount of their percent of trabecular bone compared with 2-month-old mice. There was little to no change in femoral bone in the tg/+ mice with age. Ex vivo cultures of osteoblasts from +/+ and Col2.3Bcl-2 mice showed a decrease in mineralization, no effect on proliferation, and an inhibition of glucocorticoid-induced apoptosis in Col2.3Bcl-2 cultures. Estrogen was shown to increase mouse Bcl-2 transcript levels in osteoblast cultures of wildtype mice, supporting a role for Bcl-2 in the sex-related differences in bone phenotype regulated by estrogen. Therefore, Bcl-2 differentially affected bone phenotype in male and female transgenic mice, altered bone cell activity associated with sex-related differences, and decreased bone formation, suggesting that apoptosis is necessary for mineralization. In addition, Bcl-2 targeted to mature osteoblasts seemed to delay bone development, producing a smaller transgenic mouse compared with wildtype littermates. These studies suggest that expression of Bcl-2 in osteoblasts is important in regulating bone mass in development and in the normal aging process of bone. [source]


Identification of novel splice variants of the human catalytic subunit c, of cAMP-dependent protein kinase

FEBS JOURNAL, Issue 19 2001
Sigurd Ørstavik
Four different isoforms of the catalytic subunit of cAMP-dependent protein kinase, termed C,, C,, C, and PrKX have been identified. Here we demonstrate that the human C, gene encodes six splice variants, designated C,1, C,2, C,3, C,4, C,4ab and C,4abc. The C, splice variants differ in their N-terminal ends due to differential splicing of four different forms of exon 1 designated exon 1-1, 1-2, 1-3, 1-4 and three exons designated a, b and c. All these exons are located upstream of exon 2 in the C, gene. The previously identified human C, variant has been termed C,1, and is similar to the C, isoform identified in the mouse, ox, pig and several other mammals. Human C,2, which is the homologue of bovine C,2, has no homologue in the mouse. Human C,3 and C,4 are homologous to the murine C,3 and C,2 splice variants, whereas human C,4ab and C,4abc represent novel isofoms previously not identified in any other species. At the mRNA level, the C, splice variants reveal tissue specific expression. C,1 was most abundantly expressed in the brain, with low-level expression in several other tissues. The C,3 and C,4 splice variants were uniquely expressed in human brain in contrast to C,2, which was most abundantly expressed in tissues of the immune system, with no detectable expression in brain. We suggest that the various C, splice variants when complexed with regulatory subunits may give rise to novel holoenzymes of protein kinase A that may be important for mediating specific effects of cAMP. [source]


Molecular characterization of two novel milk proteins in the tsetse fly (Glossina morsitans morsitans)

INSECT MOLECULAR BIOLOGY, Issue 2 2010
G. Yang
Abstract Purpose: Milk proteins are an essential component of viviparous reproduction in the tsetse fly. Milk proteins are synthesized in and secreted from the milk gland tissue and constitute 50% of the secretions from which the intrauterine larva derives its nourishment. To understand milk protein function and regulation during viviparous reproduction, milk proteins need to be identified and characterized. Methods: Two putative unknown secretory proteins (GmmMGP2 and GmmMGP3) were selected by bioinformatic analysis of tissue specific tsetse cDNA libraries. RT-PCR analysis was performed to verify their milk gland/fat body specific expression profile. Detailed characterization of developmental and tissue specific expression of these proteins was performed by northern blot analysis and fluorescent in situ hybridization. Functional analysis of the milk gland proteins during the tsetse gonotrophic cycle was performed using RNA interference (RNAi). Results: The predicted proteins from gmmmgp2 and gmmmgp3 are small ,22 kD and contain a high proportion of hydrophobic amino acids and potential phosphorylation sites. Expression of both genes is tissue specific to the secretory cells of the milk gland. Transcript abundance for both genes increases over the course of intrauterine larval development and parallels that of gmmmgp, a well characterized milk protein gene considered to be the major milk protein. Phenotypic analysis of flies after RNA interference treatment revealed a significant effect upon fecundity in the gmmmgp2 knockdown flies, but not the gmmmgp3 flies. Knockdown of gmmmgp2 resulted in disruption of ovulation and consequent oocyte accumulation and degradation. Gmmmgp2 knockdown also had a significant impact on fly mortality. Conclusions: This work identifies two novel genes, the proteins of which appear to function in response to intrauterine larvigenesis in tsetse. These proteins may be nutritional components of the milk secretions provided to the larva from the mother. Phenotypic data from knockdown of gmmmgp2 suggests that this protein may also have a regulatory function given the defect in ovulation observed in knockdown flies. Further analysis of these genes will be important (in conjunction with other milk proteins) for identification of transcriptional regulation mechanisms that direct milk gland/pregnancy specific gene expression. [source]


Cloning and expression profile of FLT3 gene during progenitor cell-dependent liver regeneration

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 12 2007
Iraz T Aydin
Abstract Background and Aim:, The liver has a unique capacity to regenerate upon exposure to viral infections, toxic reactions and cancer formation. Liver regeneration is a complex phenomenon in which several factors participate during its onset. Cellular proliferation is an important component of this process and the factors that regulate this proliferation have a vital role. FLT3, a well-known hematopoietic stem cell and hepatic lineage surface marker, is involved in proliferative events of hematopoietic stem cells. However, its contribution to liver regeneration is not known. Therefore, the aim of this study was to clone and examine the role of FLT3 during liver regeneration in rats. Methods:, Partial cDNA of rat homolog of FLT3 gene was cloned from thymus and the tissue specific expression of this gene at mRNA and protein levels was examined by RT-PCR and Western blot. After treating with 2-AAF and performing hepatectomy in rats to induce progenitor-dependent liver regeneration, the mRNA and protein expression profile of FLT3 was investigated by real-time PCR and Western blot during liver regeneration. In addition, cellular localization of FLT3 protein was determined by immunohistochemistry. Results:, The results indicated that rat FLT3 cDNA has high homology with mouse and human FLT3 cDNA. It was also found that FLT3 is expressed in most of the rat tissues and during liver regeneration. In addition, its intracellular localization is altered during the late stages of liver regeneration. Conclusion:, The FLT3 receptor is activated at the late stages of liver regeneration and participates in the proliferation response that is observed during progenitor-dependent liver regeneration. [source]