Tissue Microenvironment (tissue + microenvironment)

Distribution by Scientific Domains


Selected Abstracts


Laminin-5 stimulates hepatocellular carcinoma growth through a different function of ,6,4 and ,3,1 integrins,

HEPATOLOGY, Issue 6 2007
Carlo Bergamini
Hepatocellular carcinoma (HCC) growth severely affects prognosis. Ki-67, a known marker of cell proliferation, is a negative prognostic factor in HCC. Growth factors such as the epidermal growth factor (EGF) induce HCC cell proliferation but do not explain the great heterogeneity of HCC growth. Laminin-5 (Ln-5) is an extracellular matrix protein (ECM) present in the tissue microenvironment of HCC. The two main receptors for Ln-5, integrins ,3,1 and ,6,4, are expressed on the cell surface of HCC cells. The aim of this study is to investigate an alternative mechanism of HCC growth whereby Ln-5 promotes HCC cell proliferation through ,3,1 and ,6,4. HCC tissues containing Ln-5 display a larger diameter and higher number of positive cells for Ki-67, a well known proliferative index, as determined by double immunofluorescence staining and real-time PCR on microdissected tissues. In vitro, Ln-5, but not collagen I, collagen IV or fibronectin, induces proliferation as much as EGF does, via Erk phosphorylation as a consequence of ,4 integrin phosphorylation. However, the two HCC cell lines do not proliferate in presence of Ln-5 despite ,4 integrin and Erk1/2 activation. After transfection with ,3 integrin, in the presence of Ln-5 one of these HCC cell lines acquires a proliferative activity whereas one of the proliferative HCC cell lines, knocked-down for ,3 integrin, loses its proliferative activity. Conclusions: Our study suggests a new mechanism of HCC growth whereby Ln-5 stimulates proliferation via a different function of ,6,4 and ,3,1. (HEPATOLOGY 2007.) [source]


Pathways of murine mast cell development and trafficking: tracking the roots and routes of the mast cell

IMMUNOLOGICAL REVIEWS, Issue 1 2007
Jenny Hallgren
Summary:, The appreciation of the role of the mast cell (MC) in inflammatory processes has expanded dramatically during the last decade. Many of these processes, especially more prolonged responses, are accompanied by an increase in the number of MCs, and much of this increase is likely because of recruitment of immature progenitors with subsequent maturation under the control of the tissue microenvironment. We have begun to identify many of the cell-surface molecules that control this influx and have traced the development of these cells back to their hematopoietic roots. This development proceeds along the myelomonocytic pathway with distinct intermediates having been identified in both bone marrow and spleen. The expression of ,4,7 integrins has played a prominent role in this process, as it helped identify a bipotent basophil MC precursor in the spleens of C57BL/6 mice. This integrin also controls basal influx into the intestine and, along with ,4,1 integrins, plays a critical role in recruitment to inflamed lungs. Investigation of chemokines and chemokine receptors in these processes led to the identification of a dual role for the murine interleukin-8 receptor CXCR2. This ,-chemokine receptor affects MC progenitor trafficking by its expression by MC progenitors and by its expression on stromal cells, likely endothelium, affecting trafficking to both intestine under basal conditions and lung during inflammatory recruitment. [source]


Role of the metastasis-promoting protein osteopontin in the tumour microenvironment

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8 2010
Pieter H. Anborgh
Abstract Osteopontin (OPN) is a secreted protein present in bodily fluids and tissues. It is subject to multiple post-translational modifications, including phosphorylation, glycosylation, proteolytic cleavage and crosslinking by transglutamination. Binding of OPN to integrin and CD44 receptors regulates signalling cascades that affect processes such as adhesion, migration, invasion, chemotaxis and cell survival. A variety of cells and tissues express OPN, including bone, vasculature, kidney, inflammatory cells and numerous secretory epithelia. Normal physiological roles include regulation of immune functions, vascular remodelling, wound repair and developmental processes. OPN also is expressed in many cancers, and elevated levels in patients' tumour tissue and blood are associated with poor prognosis. Tumour growth is regulated by interactions between tumour cells and their tissue microenvironment. Within a tumour mass, OPN can be expressed by both tumour cells and cellular components of the tumour microenvironment, and both tumour and normal cells may have receptors able to bind to OPN. OPN can also be found as a component of the extracellular matrix. The functional roles of OPN in a tumour are thus complex, with OPN secreted by both tumour cells and cells in the tumour microenvironment, both of which can in turn respond to OPN. Much remains to be learned about the cross-talk between normal and tumour cells within a tumour, and the role of multiple forms of OPN in these interactions. Understanding OPN-mediated interactions within a tumour will be important for the development of therapeutic strategies to target OPN. [source]


Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 3 2002
Axel Gossmann MD
Abstract Purpose To evaluate the effects of a neutralizing anti-vascular endothelial growth factor (anti-VEGF) antibody on tumor microvascular permeability, a proposed indicator of angiogenesis, and tumor growth in a rodent malignant glioma model. Materials and Methods A dynamic contrast-enhanced magnetic resonance imaging (MRI) technique, permitting noninvasive in vivo and in situ assessment of potential therapeutic effects, was used to measure tumor microvascular characteristics and volumes. U-87, a cell line derived from a human glioblastoma multiforme, was implanted orthotopically into brains of athymic homozygous nude rats. Results Treatment with the monoclonal antibody A4.6.1, specific for VEGF, significantly inhibited tumor microvascular permeability (6.1 ± 3.6 mL min,1100 cc,1), compared to the control, saline-treated tumors (28.6 ± 8.6 mL min,1100 cc,1), and significantly suppressed tumor growth (P < .05). Conclusion Findings demonstrate that tumor vascular permeability and tumor growth can be inhibited by neutralization of endogenous VEGF and suggest that angiogenesis with the maintenance of endothelial hyperpermeability requires the presence of VEGF within the tissue microenvironment. Changes in tumor vessel permeability and tumor volumes as measured by contrast-enhanced MRI provide an assay that could prove useful for clinical monitoring of anti-angiogenic therapies in brain tumors. J. Magn. Reson. Imaging 2002;15:233,240. © 2002 Wiley-Liss, Inc. [source]


Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases

PATHOLOGY INTERNATIONAL, Issue 7 2010
Takayuki Shiomi
Cellular functions within tissues are strictly regulated by the tissue microenvironment which comprises extracellular matrix and extracellular matrix-deposited factors such as growth factors, cytokines and chemokines. These molecules are metabolized by matrix metalloproteinases (MMP), a disintegrin and metalloproteinases (ADAM) and ADAM with thrombospondin motifs (ADAMTS), which are members of the metzincin superfamily. They function in various pathological conditions of both neoplastic and non-neoplastic diseases by digesting different substrates under the control of tissue inhibitors of metalloproteinases (TIMP) and reversion-inducing, cysteine-rich protein with Kazal motifs (RECK). In neoplastic diseases MMP play a central role in cancer cell invasion and metastases, and ADAM are also important to cancer cell proliferation and progression through the metabolism of growth factors and their receptors. Numerous papers have described the involvement of these metalloproteinases in non-neoplastic diseases in nearly every organ. In contrast to the numerous review articles on their roles in cancer cell proliferation and progression, there are very few articles discussing non-neoplastic diseases. This review therefore will focus on the properties of MMP, ADAM and ADAMTS and their implications for non-neoplastic diseases of the cardiovascular system, respiratory system, central nervous system, digestive system, renal system, wound healing and infection, and joints and muscular system. [source]


Inflammatory processes of prostate tissue microenvironment drive rat prostate carcinogenesis: Preventive effects of celecoxib

THE PROSTATE, Issue 2 2009
Narayanan K. Narayanan
Abstract BACKGROUND Prostate tissue microenvironment is susceptible to several risk factors including carcinogens, dietary factors, hormones, cytokines and growth factors that could induce chronic inflammation. Because of the difference in the serum levels and the intrinsic ability of monocytes/macrophages to cause harm, the transcriptional responses triggered by inflammatory stimuli must be controlled. Unfortunately, an in-depth association between prostate cancer and potential mediators of inflammation has not been completely investigated. METHODS To determine whether activated macrophage (infiltrating monocytes), iNOS and NF-,B are primary mediators of inflammation, besides COX-2, in prostate carcinogenesis, we examined tissue sections of rat prostate tumor induced by N -methyl- N -nitrosourea (MNU) plus testosterone in a follow-up study. We performed H&E and immunohsitochemical staining of the prostate tissue to detect specific markers of inflammation. RESULTS We report an increase in infiltrating monocyte, iNOS, NF-,Bp65, VEGF and TNF-, at the early and advanced stages of tumor growth in MNU plus testosterone treated rats. Monocyte infiltration was often found in the stromal and perivascular regions of the DL prostate. We conclude for the first time that prostate cancer induced by MNU plus testosterone partly involves mediators of inflammation which could trigger the process of carcinogenesis and cause loss of apoptosis. Selective COX-2 inhibitor celecoxib at a dose of 500 mg/kg/bw administered for 52 weeks reduced infiltrating monocytes, inhibited iNOS, NF-,B p65 expression, induced apoptosis and tumor growth inhibition. CONCLUSION Carcinogen plus testosterone induced prostate carcinogenesis showing activation of macrophage, iNOS and NF-,Bp65 could be prevented by celecoxib or related anti-inflammatory agents. Prostate 69: 133,141, 2009. © 2008 Wiley,Liss, Inc. [source]


Significance of local immunity in hen reproductive organs

ANIMAL SCIENCE JOURNAL, Issue 3 2004
Yukinori YOSHIMURA
ABSTRACT The current paper describes aspects of local immunity in the ovary and oviduct, and the significance of immunity to reproductive functions in hens. The immunocompetent cell populations in the ovary and oviduct change with a positive correlation to sexual activity, and gonadal steroid is one of the key factors in the increase. Local immune responses mediated by major histocompatibility complex class II and T cell subsets occur in response to infection by Salmonella enteritidis, which may contaminate eggs. In the ovary, immunocompetent cells are also suggested to play roles in the regulation of ovarian functions. Macrophages and T cells are likely to enhance the regression of atretic follicles to maintain the ovarian tissue microenvironment. Autoantibodies to ovarian tissues appeared in the hens with low egg laying frequency, suggesting that the auto-antibodies may be one of the factors in the decline of egg production. In the oviduct, local immunity possibly has a role in the selection of sperm, though the immunoreactions may also affect sperm survival leading to the decline in fertility. The concentration of yolk IgY, which plays a role in maternal immunity transmission, significantly decreases with the aging of birds, whereas it is significantly increased by estrogen. Therefore, the immune system plays significant roles not only in defense against infection, but also in the functions of reproductive organs. Investigations on the local immune system in the reproductive organs and factors affecting it are of importance for the production of sterile eggs and improvement of reproductive functions. [source]


Signalling and phagocytosis in the orchestration of host defence

CELLULAR MICROBIOLOGY, Issue 2 2007
J. Magarian Blander
Summary Dendritic cells (DCs) orchestrate either tolerance or immunity. At the heart of this function lies phagocytosis, which allows DCs to sample the tissue microenvironment and deliver both its self and non-self constituents into endocytic compartments for clearance, degradation and presentation by major histocompatibility complex (MHC) molecules. Depending on the type of signalling pathways triggered during phagocytosis, DCs deliver appropriate signals to T cells that determine either their tolerance or activation and differentiation. Here I draw attention to the ability of DCs to read the contents of their phagosomes depending on the type of compartmentalized signalling pathways engaged during internalization. Toll-like receptors (TLRs) engaged during phagocytosis of microbial pathogens, but not syngeneic apoptotic cells exert phagosome autonomous control on both the kinetics and outcome of phagosome maturation. By bearing the assembly of signalling complexes on their membranes, individual phagosomes undergo separate programmes of maturation irrespective of the activation status of the DC carrying them. Phagosomes carrying microbial cargo are favoured for MHC class II presentation precluding phagosomes carrying self from contributing to the first signal delivered to T cells , the peptide,MHC complex. This mechanism prevents the potential presentation of peptides derived from self within the context of TLR-induced co-stimulatory signals. [source]


Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape

IMMUNOLOGICAL REVIEWS, Issue 1 2008
Jessica B. Katz
Summary: Indoleamine 2, 3-dioxygenase (IDO) degrades the essential amino acid tryptophan in mammals, catalyzing the initial and rate-limiting step in the de novo biosynthesis nicotinamide adenine dinucleotide (NAD). Broad evidence implicates IDO and the tryptophan catabolic pathway in generation of immune tolerance to foreign antigens in tissue microenvironments. In particular, recent findings have established that IDO is overexpressed in both tumor cells and antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance to tumor antigens. In the normal physiologic state, IDO is important in creating an environment that limits damage to tissues due to an overactive immune system. However, by fostering immune suppression, IDO can facilitate the survival and growth of tumor cells expressing unique antigens that would be recognized normally as foreign. In preclinical studies, small-molecule inhibitors of IDO can reverse this mechanism of immunosuppression, complementing classical cytotoxic cancer chemotherapeutic agents' ability to trigger regression of treatment-resistant tumors. These results have encouraged the clinical translation of IDO inhibitors, the first of which entered phase I clinical trials in the fall of 2007. In this article, we survey the work defining IDO as an important mediator of peripheral tolerance, review evidence of IDO dysregulation in cancer cells, and provide an overview of the development of IDO inhibitors as a new immunoregulatory treatment modality for clinical trials. [source]


Neoplastic development in plasma cells

IMMUNOLOGICAL REVIEWS, Issue 1 2003
Michael Potter
Summary:, An increasing number of model systems of plasma cell tumor (PCT) formation have been and are being developed. Discussed here are six models in mice and multiple myeloma (MM) in humans. Each model illustrates a unique set of biological factors. There are two general types of model systems: those that depend upon naturally arising mutagenic changes (pristane-induced PCTs, 5TMM, and MM) and those that are associated with oncogenes (Eµ-v-abl), growth factors [interleukin-6 (IL-6)], and anti-apoptotic factors (Bcl-xL/Bcl-2). PCTs develop in several special tissue microenvironments that provide essential cytokines (IL-6) and cell,cell interactions. In mice, the activation and deregulation of c-myc by chromosomal translocations is a major feature in many of the models. This mechanism is much less a factor in MM and the 5T model in mice. Genetically determined susceptibility is involved in many of the mouse models, but only a few genes have been implicated thus far. [source]