Tissue Lipids (tissue + lipid)

Distribution by Scientific Domains

Terms modified by Tissue Lipids

  • tissue lipid content
  • tissue lipid peroxidation

  • Selected Abstracts


    Bioaccumulation Assessment Using Predictive Approaches,

    INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT, Issue 4 2009
    John W Nichols
    Abstract Mandated efforts to assess chemicals for their potential to bioaccumulate within the environment are increasingly moving into the realm of data inadequacy. Consequently, there is an increasing reliance on predictive tools to complete regulatory requirements in a timely and cost-effective manner. The kinetic processes of absorption, distribution, metabolism, and elimination (ADME) determine the extent to which chemicals accumulate in fish and other biota. Current mathematical models of bioaccumulation implicitly or explicitly consider these ADME processes, but there is a lack of data needed to specify critical model input parameters. This is particularly true for compounds that are metabolized, exhibit restricted diffusion across biological membranes, or do not partition simply to tissue lipid. Here we discuss the potential of in vitro test systems to provide needed data for bioaccumulation modeling efforts. Recent studies demonstrate the utility of these systems and provide a "proof of concept" for the prediction models. Computational methods that predict ADME processes from an evaluation of chemical structure are also described. Most regulatory agencies perform bioaccumulation assessments using a weight-of-evidence approach. A strategy is presented for incorporating predictive methods into this approach. To implement this strategy it is important to understand the "domain of applicability" of both in vitro and structure-based approaches, and the context in which they are applied. [source]


    Effect of Cogent db, a herbal drug, on serum and tissue lipid metabolism in experimental hyperglycaemic rats

    DIABETES OBESITY & METABOLISM, Issue 3 2003
    G. Saravanan
    Aims:, We have previously reported the antidiabetic effect of Cogent db. The present study with alloxan-induced hyperglycaemic rats is focused on the mechanism of action, specifically on the activity of hepatic lipogenic enzymes, serum and tissue lipids. Methods:, Male Wistar rats body weight of 180,200 g (six normal and 18 diabetic rats) were used in this study. The rats were divided into four groups after the induction of alloxan diabetes: normal rats; diabetic control; diabetic rats given Cogent db (0.45 g/kg body weight); diabetic rats given glibenclamide (600 µg/kg body weight). After 40 days treatment, fasting blood glucose, plasma insulin, activities of hepatic lipogenic enzymes, serum and tissue lipids were determined in normal and experimental animals. Results:, Oral administration of Cogent db for 40 days resulted in significant reduction in blood glucose, serum and tissue (liver and kidney) lipids, whereas the level of plasma insulin and the activity of hepatic lipogenic enzymes were significantly increased in alloxan diabetic rats. Similar studies using glibenclamide have been conducted to compare the mode of action of these two drugs. Conclusions:, Thus our study shows that Cogent db exhibits a strong antihyperlipidaemic effect, which could exert a beneficial action against macrovascular complications (cardiovascular disease) associated with diabetes mellitus. [source]


    Postprandial lipemic response to alpha-linolenic acid rich oil, butter, and olive oil

    EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 9 2010
    Julia Svensson
    Abstract Postprandial lipemia varies with composition of dietary fat due to partitioning of fatty acids between ,-oxidation, incorporation into TAG, and tissue lipids. Effects of alpha-linolenic acid (ALA) are poorly characterized. Lipase-catalyzed transesterification was used to produce a novel ALA-oil (35% ALA) from rapeseed and linseed oil. We hypothesized a lower postprandial lipemic response with ALA-oil than with olive oil and butter due to higher ,-oxidation of ALA. A randomized crossover study with 26 healthy men compared the effects on plasma lipids 7,h after a breakfast containing 35,g ALA-rich oil, butter fat, or olive oil. The incremental area under curve for plasma TAG was lower with butter than with olive oil (34%, p<0.05) and ALA-oil (25%, ns). After ALA-oil percentage ALA increased, in TAG to a constant level of 7,mol% and in NEFA to 6% after 7,h. Since total NEFA increased with time the amount of exogenous ALA in NEFA also increased. Butter resulted in lower postprandial lipemia than the oils, the difference exceeding what is expected from the presence of short and medium chain fatty acids in butter. There was a considerable recirculation of ALA into the NEFA pool available for oxidation. Practical application: Enzymatic transesterification was used to produce a dietary oil rich in ALA. By randomizing the partitioning of ALA more evenly between the TAG molecules the risk of oxidation could be reduced. Analyses showed that the ALA-oil was stable during storage for at least 3 months. Enzymatic transesterification could be used as an advantageous method to design an ALA rich dietary oil with new properties regarding fatty acid composition, susceptibility to oxidation, and effects on blood lipids. [source]


    Porphyromonas gingivalis lipids and diseased dental tissues

    MOLECULAR ORAL MICROBIOLOGY, Issue 2 2006
    F. C. Nichols
    Background/aim:,Porphyromonas gingivalis synthesizes several classes of dihydroceramides and at least one of these lipid classes promotes proinflammatory secretory reactions in gingival fibroblasts as well as alters fibroblast morphology in culture. The purpose of this investigation was to determine whether the dihydroceramide lipids of P. gingivalis are recovered in lipid extracts of subgingival plaque, diseased teeth, and diseased gingival tissue samples. Methods:, Lipids were extracted from P. gingivalis, subgingival plaque, subgingival calculus, teeth laden with gross accumulations of subgingival calculus, and gingival tissue samples obtained from chronic severe periodontitis sites. Lipid samples were analyzed by gas chromatography-mass spectrometry as trimethylsilyl derivatives or by electrospray-mass spectrometry as underivatized products. High-performance liquid chromatography fractions of P. gingivalis lipids and gingival tissue lipids were also analyzed by electrospray-mass spectrometry analysis. Results:,P. gingivalis phosphorylated dihydroceramides were recovered in lipid extracts of subgingival plaque, subgingival calculus, calculus contaminated teeth, and diseased gingival tissue samples. However, the distribution of phosphorylated dihydroceramides varied between these samples. Conclusion:, Subgingival plaque, subgingival calculus, diseased teeth, and gingival tissue are contaminated with phosphorylated dihydroceramides produced by P. gingivalis. The previously reported biological activity of these substances together with the recovery of these lipids at periodontal disease sites argues strongly for their classification as virulence factors in promoting chronic inflammatory periodontal disease. [source]


    Novel corrective equations for complete estimation of human tissue lipids after their partial destruction by perchloric acid pre-treatment: high-resolution 1H-NMR-based study

    NMR IN BIOMEDICINE, Issue 2 2008
    Niraj Kumar Srivastava
    Abstract Owing to the small quantity of tissue available in human biopsy specimens, aqueous and lipid components often have to be determined in the same tissue sample. Perchloric acid (PCA) used for the extraction of aqueous metabolites has a deleterious effect on lipid components; the severity of the damage is not known. In this study, human muscle tissue was first treated with PCA to extract aqueous metabolites, and the residue was then used for lipid extraction by conventional methods, i.e. the methods of Folch and Bligh & Dyer and a standardised one using methanol/chloroform (1:3, v/v) used in our laboratory. A 1H-NMR spectrum was obtained for each lipid extract. Lipid was quantified by measuring the integral area of N+ -(CH3)3 signals of phospholipids (PLs). Triacylglycerol (TG) and cholesterol (CHOL) were quantified using the -CH2 - signals of glycerol and the C18 methyl signal, respectively. This study shows that prior use of PCA caused marked attenuation of TG, PL, and CHOL. This was confirmed by recovery experiments and observation of the direct effect of PCA on the standard lipid components. On the basis of the quantity of lipid lost in each case, three novel equations (with respect to TG, PL, and CHOL) were derived. Application of these equations to lipid quantities estimated in different pathological tissues after PCA pre-treatment produced values equivalent to those estimated without PCA use. This study conclusively shows that PCA pre-treatment damages all three lipid moieties, TG, PL, and CHOL. When PCA is used in a fixed ratio to the tissue, the lipid damage is also proportional and correctable by statistically derived equations. These equations will be useful in human biopsy specimens where aqueous and lipid components have to be studied using the same tissue sample because of the small quantity available. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Do changes in Atlantic salmon, Salmo salar L., fillet fatty acids following a dietary switch represent wash-out or dilution?

    AQUACULTURE RESEARCH, Issue 13 2003
    Test of a dilution model, its application
    Abstract The fatty acid compositions of fish tissue lipids usually reflect those of the feed lipids, but few attempts have been made to predict the way in which the profiles change or assess the time required for the fatty acid profile to stabilize following a dietary change. The present focus on the influences of vegetable oils and fish oils on the fatty acid compositions and sensory attributes of fish fillets increases the interest in the ability to make such predictions. A dilution model was tested using data for the influences of feed oils (rape/linseed (V) vs. sand-eel (F)) and dietary fat concentrations (ca. 30% (H) vs. ca. 20% (L)) on the body growth and fatty acid compositions of the fillets of Atlantic salmon, Salmo salar L., parr and post smolt. Fish given HV or LV feeds during freshwater rearing (mass increase from ca. 19 g to ca. 130 g) were switched to HF and LF feeds following parr,smolt transformation. The changes in fillet percentages of 18:1, 18:2 (n-6) and 18:3 (n-3) during 98 days of on-growing in seawater (mass increase from ca. 130 g to ca. 380 g) conformed closely to predictions made on the basis of the dilution model. Model applications require information about the proportionate increase in fillet fat over time, but the relative changes in body mass can be used as a surrogate provided that both fillet yield (as a % of body mass) and fillet fat percentage change little over time. This is not the case for small salmon, but does seem to apply to larger salmon as they approach harvest size. This means that, for large salmon, ratios of changes in body mass can be substituted for ratios in the quantitative change in fillet fat without the introduction of a large error in the prediction of the change in fillet fatty acid profile following the introduction of a novel feed. [source]