Tissue Isolated (tissue + isolated)

Distribution by Scientific Domains


Selected Abstracts


Influx of calcium through L-type calcium channels in early postnatal regulation of chloride transporters in the rat hippocampus

DEVELOPMENTAL NEUROBIOLOGY, Issue 13 2009
Jennifer G. Bray
Abstract During the early postnatal period, GABAB receptor activation facilitates L-type calcium current in rat hippocampus. One developmental process that L-type current may regulate is the change in expression of the K+Cl, co-transporter (KCC2) and N+K+2Cl, co-transporter (NKCC1), which are involved in the maturation of the GABAergic system. The present study investigated the connection between L-type current, GABAB receptors, and expression of chloride transporters during development. The facilitation of L-type current by GABAB receptors is more prominent in the second week of development, with the highest percentage of cells exhibiting facilitation in cultures isolated from 7 day old rats (37.5%). The protein levels of KCC2 and NKCC1 were investigated to determine the developmental timecourse of expression as well as expression following treatment with an L-type channel antagonist and a GABAB receptor agonist. The time course of both chloride transporters in culture mimics that seen in hippocampal tissue isolated from various ages. KCC2 levels increased drastically in the first two postnatal weeks while NKCC1 remained relatively stable, suggesting that the ratio of the chloride transporters is important in mediating the developmental change in chloride reversal potential. Treatment of cultures with the L-type antagonist nimodipine did not affect protein levels of NKCC1, but significantly decreased the upregulation of KCC2 during the first postnatal week. In addition, calcium current facilitation occurs slightly before the large increase in KCC2 expression. These results suggest that the expression of KCC2 is regulated by calcium influx through L-type channels in the early postnatal period in hippocampal neurons. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009 [source]


Field efficacy of transgenic cotton containing single and double toxin genes against the Asian corn borer (Lep., Pyralidae)

JOURNAL OF APPLIED ENTOMOLOGY, Issue 9-10 2004
K. He
Abstract:, Insect resistant transgenic cotton (Gossypium hirsutum L.) is expected to provide satisfactory control of lepidopteran species in the cotton field. The Asian corn borer, Ostrinia furnacalis (Guenée) (Lep., Pyralidae), is an important component of the lepidopteran pest complex of cotton in China. Insect resistant transgenic cotton cultivars GK2, carrying cry1A gene, and SGK321, carrying both cry1A and CpTI genes, were evaluated for resistance to Asian corn borer. Field trials were conducted with artificial infestation of Asian corn borer at squaring, flowering and flowering-boll cotton plants, which coincided with the generations of natural Asian corn borer occurrence. Damage ratings were significantly reduced in transgenic cotton cultivars both GK2 and SGK321 compared with their parental non-transgenic cotton cultivars Simian3 and Shiyuan321, respectively. In addition, percentage of plants stem bored and number of tunnels per plant were significantly higher on GK2 than on SGK321 in the second generation. Laboratory bioassays were carried out by exposing neonates to plant tissues collected from the field. Tissues assayed included the new leaves, match-head squares and white flowers, which are the tissues initially attacked by the neonates in the field. Low larval survival rates were observed on SGK321 and GK2, contrasting greatly to the high number of survivors found on their non-transgenic cotton tissue isolated throughout the season. However, larval survival was higher on new leaves isolated from late-season transgenic cotton plants and fruit tissues than on early-season. In addition, higher larval survival was observed on GK2 than SGK321 in assays with the late season tissues. This may be associated with reduced levels of available toxin in plant tissues as they age. Both laboratory and field data indicated that SGK321 and GK2 were highly resistant to Asian corn borer. The high level of efficacy for insect resistant transgenic cotton against Asian corn borer offers the potential for season-long control. [source]


Fibrillating Areas Isolated within the Left Atrium after Radiofrequency Linear Catheter Ablation

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2006
THOMAS ROSTOCK M.D.
Introduction: Nonpulmonary vein sources have been implicated as potential drivers of atrial fibrillation (AF). This observational study describes regions of fibrillating atrial tissue isolated inadvertently from the left atrium (LA) following linear catheter ablation for AF. Methods and Results: We report four patients with persistent/permanent AF who underwent pulmonary vein isolation with additional linear lesions and who presented with recurrent AF (mean AF cycle length [AFCL] 175,270 ms). Further catheter ablation resulted in the inadvertent electrical isolation of significant areas of the LA in which AF persisted at the same AFCL as was measured prior to disconnection, despite the restoration of sinus rhythm (SR) in all other left and right atrial areas, strongly suggesting that these islands were driving the remaining atria into fibrillation. The disconnected areas were located in the lateral LA, including the left atrial appendage (LAA) in three patients (limited to the LAA in one) and in the posterior LA in one patient. These isolated fibrillating regions represented 15,24% of the global LA surface, as estimated by electroanatomic mapping. Conclusion: Fibrillation can be maintained within electrically isolated regions of the LA following catheter ablation of AF, demonstrating the importance of atrial drivers in the maintenance of AF. Further mapping of these drivers is needed to characterize their mechanism and thereby allow for a more specific ablation strategy. [source]


Sex differences in the level of Bcl-2 family proteins and caspase-3 activation in the sexually dimorphic nuclei of the preoptic area in postnatal rats

DEVELOPMENTAL NEUROBIOLOGY, Issue 13 2006
Shinji Tsukahara
Abstract In developing rats, sex differences in the number of apoptotic cells are found in the central division of the medial preoptic nucleus (MPNc), which is a significant component of the sexually dimorphic nucleus of the preoptic area, and in the anteroventral periventricular nucleus (AVPV). Specifically, male rats have more apoptotic cells in the developing AVPV, whereas females have more apoptotic cells in the developing MPNc. To determine the mechanisms for the sex differences in apoptosis in these nuclei, we compared the expression of the Bcl-2 family members and active caspase-3 in postnatal female and male rats. Western blot analyses for the Bcl-2 family proteins were performed using preoptic tissues isolated from the brain on postnatal day (PD) 1 (day of birth) or on PD8. In the AVPV-containing tissues of PD1 rats, there were significant sex differences in the level of Bcl-2 (female > male) and Bax (female < male) proteins, but not of Bcl-xL or Bad proteins. In the MPNc-containing tissues of PD8 rats, there were significant sex differences in the protein levels for Bcl-2 (female < male), Bax (female > male), and Bad (female < male), but not for Bcl-xL. Immunohistochemical analyses showed significant sex differences in the number of active caspase-3-immunoreactive cells in the AVPV on PD1 (female < male) and in the MPNc on PD8 (female > male). We further found that active caspase-3-immunoreactive cells of the AVPV and MPNc were immunoreactive for NeuN, a neuronal marker. These results suggest that there are sex differences in the induction of apoptosis via the mitochondrial pathway during development of the AVPV and MPNc. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


Role and therapeutic potential of microRNAs in diabetes

DIABETES OBESITY & METABOLISM, Issue 2009
I. G. M. Kolfschoten
The discovery in mammalian cells of hundreds of small RNA molecules, called microRNAs, with the potential to modulate the expression of the majority of the protein-coding genes has revolutionized many areas of biomedical research, including the diabetes field. MicroRNAs function as translational repressors and are emerging as key regulators of most, if not all, physiological processes. Moreover, alterations in the level or function of microRNAs are associated with an increasing number of diseases. Here, we describe the mechanisms governing the biogenesis and activities of microRNAs. We present evidence for the involvement of microRNAs in diabetes mellitus, by outlining the contribution of these small RNA molecules in the control of pancreatic ,-cell functions and by reviewing recent studies reporting changes in microRNA expression in tissues isolated from diabetes animal models. MicroRNAs hold great potential as therapeutic targets. We describe the strategies developed for the delivery of molecules mimicking or blocking the function of these tiny regulators of gene expression in living animals. In addition, because changes in serum microRNA profiles have been shown to occur in association with different human diseases, we also discuss the potential use of microRNAs as blood biomarkers for prevention and management of diabetes. [source]


Catecholamine exocytosis is diminished in R6/2 Huntington's disease model mice

JOURNAL OF NEUROCHEMISTRY, Issue 5 2007
Michael A. Johnson
Abstract In this work, the mechanisms responsible for dopamine (DA) release impairments observed previously in Huntington's disease model R6/2 mice were evaluated. Voltammetrically measured DA release evoked in striatal brain slices from 12-week old R6/2 mice by a single electrical stimulus pulse was only 19% of wild-type (WT) control mice. Iontophoresis experiments suggest that the concentration of released DA is not diluted by a larger striatal extracellular volume arising from brain atrophy, but, rather, that striatal dopaminergic terminals have a decreased capacity for DA release. This decreased capacity was not due to an altered requirement for extracellular Ca2+, and, as in WT mice, the release in R6/2 mice required functioning vesicular transporters. Catecholamine secretion from individual vesicles was measured during exocytosis from adrenal chromaffin cells harvested from R6/2 and WT mice. While the number of exocytotic events was unchanged, the amounts released per vesicle were significantly diminished in R6/2 mice, indicating that vesicular catecholamines are present in decreased amounts. Treatment of chromaffin cells with 3-nitropropionic acid decreased the vesicular release amount from WT cells by 50%, mimicking the release observed from untreated R6/2 cells. Thus, catecholamine release from tissues isolated from R6/2 mice is diminished because of impaired vesicle loading. [source]