Tissue Factor Expression (tissue + factor_expression)

Distribution by Scientific Domains


Selected Abstracts


Tissue Factor Expression and Serum Level in Patients with Melanoma does not Correlate with Disease Progression

PIGMENT CELL & MELANOMA RESEARCH, Issue 3 2001
Toshiro Kageshita
Not only does tissue factor (TF) play a crucial role in hemostasis and thrombosis, but it is also involved in tumor progression and metastatic potency in some malignant tumors. We evaluated the clinical relevance of TF expression in melanocytic tumors and TF serum level in patients with malignant melanoma. TF expression in benign and malignant melanocytic lesions was examined by immunoperoxidase staining in 20 nevi, 41 primary, and 24 metastatic melanoma lesions. TF was detected in 94, 95, and 100% of these lesions, respectively. The staining pattern was membranous and cytoplasmic both in nevi and melanoma cells. This finding was confirmed by western blot analysis using cultured human melanocytes, nevi cells, and melanoma cell lines. TF was also expressed on blood vessels in benign and malignant melanocytic lesions. Expression of TF in primary melanoma lesions was not associated with any clinicopathological variables. In addition, the serum level of TF was elevated in 14% of patients with melanoma; however, it was not correlated with disease progression. These results suggest that TF was ubiquitously expressed in melanocytic cells and its expression was not correlated with disease progression and/or metastatic potency of melanoma cells. [source]


Recipient Tissue Factor Expression Is Associated With Consumptive Coagulopathy in Pig-to-Primate Kidney Xenotransplantation

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2010
C. C. Lin
Consumptive coagulopathy (CC) remains a challenge in pig-to-primate organ xenotransplantation (Tx). This study investigated the role of tissue factor (TF) expression on circulating platelets and peripheral blood mononuclear cells (PBMCs). Baboons (n = 9) received a kidney graft from pigs that were either wild-type (n = 2), ,1,3-galactosyltransferase gene-knockout (GT-KO; n = 1) or GT-KO and transgenic for the complement-regulatory protein, CD46 (GT-KO/CD46, n = 6). In the baboon where the graft developed hyperacute rejection (n = 1), the platelets and PBMCs expressed TF within 4 h of Tx. In the remaining baboons, TF was detected on platelets on post-Tx day 1. Subsequently, platelet-leukocyte aggregation developed with formation of thrombin. In the six baboons with CC, TF was not detected on baboon PBMCs until CC was beginning to develop. Graft histopathology showed fibrin deposition and platelet aggregation (n = 6), but with only minor or no features indicating a humoral immune response (n = 3), and no macrophage, B or T cell infiltration (n = 6). Activation of platelets to express TF was associated with the initiation of CC, whereas TF expression on PBMCs was concomitant with the onset of CC, often in the relative absence of features of acute humoral xenograft rejection. Prevention of recipient platelet activation may be crucial for successful pig-to-primate kidney Tx. [source]


Effect of tourniquet pressure and intra-individual variability on plasma fibrinogen, platelet P-selectin and monocyte tissue factor

INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 6 2000
J. L. Ritchie
Small differences in levels of certain haemostatic components may be clinically significant. It is important therefore to eliminate potential sources of confounding variability. This study investigated the effect of removing tourniquet pressure prior to sample collection on plasma fibrinogen levels, platelet P-selectin and monocyte tissue factor expression. Blood was collected from the right arm under maintained tourniquet pressure and from the left arm following the release of pressure once the vein was sufficiently inflated for insertion of a needle. Whole blood was labelled within one hour of venepuncture to allow analysis of platelet P-selectin and monocyte tissue factor by flow cytometry. Plasma fibrinogen levels were analysed in samples stored at ,70 °C, for all individuals at the end of the study using a method based on the Clauss technique. Intra-individual variability for each of the components was assessed by collecting samples under tourniquet pressure from four individuals on the same day on three consecutive weeks. Intra-individual variations were greater than assay CVs for all three components. There were no significant differences between the two tourniquet methods of collection for fibrinogen, P-selectin or tissue factor. In conclusion, there is no reason not to use a tourniquet during collection of blood for analysis of plasma fibrinogen, platelet P-selectin or monocyte tissue factor. [source]


Plasmodium falciparum- infected erythrocytes induce tissue factor expression in endothelial cells and support the assembly of multimolecular coagulation complexes

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 1 2007
I. M. B. FRANCISCHETTI
Summary.,Background:,Plasmodium falciparum malaria infects 300,500 million people every year, causing 1,2 million deaths annually. Evidence of a coagulation disorder, activation of endothelial cells (EC) and increase in inflammatory cytokines are often present in malaria. Objectives:,We have asked whether interaction of parasitized red blood cells (pRBC) with EC induces tissue factor (TF) expression in vitro and in vivo. The role of phosphatidylserine-containing pRBC to support the assembly of blood coagulation complexes was also investigated. Results:,We demonstrate that mature forms of pRBC induce functional expression of TF by EC in vitro with productive assembly of the extrinsic Xnase complex and initiation of the coagulation cascade. Late-stage pRBC also support the prothrombinase and intrinsic Xnase complex formation in vitro, and may function as activated platelets in the amplification phase of the blood coagulation. Notably, post-mortem brain sections obtained from P. falciparum -infected children who died from cerebral malaria and other causes display a consistent staining for TF in the EC. Conclusions:,These findings place TF expression by endothelium and the amplification of the coagulation cascade by pRBC and/or activated platelets as potentially critical steps in the pathogenesis of malaria. Furthermore, it may allow investigators to test other therapeutic alternatives targeting TF or modulators of EC function in the treatment of malaria and/or its complications. [source]


A novel nitric oxide-releasing statin derivative exerts an antiplatelet/antithrombotic activity and inhibits tissue factor expression,

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 11 2005
M. R. ROSSIELLO
Summary.,Background:,NO-releasing statins are new chemical entities, combining HMG-CoA reductase inhibition and slow NO release, that possess stronger anti-inflammatory and antiproliferative activities than the native statins. Objective:,We evaluated the antithrombotic effects of nitropravastatin (NCX-6550) by assessing its activity on platelet activation and tissue factor (TF) expression by mononuclear cells in vitro and in vivo. Methods and results:,In vitro, NCX-6550 inhibited (1) U46619- and collagen-induced platelet aggregation in buffer and plasma; (2) collagen-induced P-selectin expression in whole blood and (3) platelet adhesion to collagen-coated coverslips under high shear stress. These effects were displayed at concentrations of NCX-6550 ranging from 25 to 100 ,m, and were totally reverted by the guanylylcyclase inhibitor ODQ (10 ,m). Equimolar concentrations of pravastatin had no influence on these parameters of platelet function. LPS- and PMA-induced TF expression by blood mononuclear cells was also inhibited by NCX-6550 (IC50 13 ,m), but not by pravastatin, as assessed by functional and immunological assays and by real-time PCR. In a mouse model of platelet pulmonary thromboembolism, induced by the i.v. injection of collagen plus epinephrine, pretreatment with NCX-6550 (24,48 mg kg,1) significantly reduced platelet consumption, lung vessel occlusion and mortality. Moreover, nitropravastatin markedly inhibited the generation of procoagulant activity by spleen mononuclear cells and peritoneal macrophages in mice treated with LPS. In these in vivo models too, pravastatin failed to affect platelet activation and monocyte/macrophage procoagulant activity. Conclusions:,Our results show that nitropravastatin exerts strong antithrombotic effects in vitro and in vivo, and may represent an interesting antiatherothrombotic agent for testing in acute coronary syndromes. [source]


Superantigens from Staphylococcus aureus induce procoagulant activity and monocyte tissue factor expression in whole blood and mononuclear cells via IL-1,

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 12 2003
E. Mattsson
Summary.,Background:,Staphylococcus aureus is one of the most common bacteria in human sepsis, a condition in which the activation of blood coagulation plays a critical pathophysiological role. During severe sepsis and septic shock microthrombi and multiorgan dysfunction are observed as a result of bacterial interference with the host defense and coagulation systems. Objectives:,In the present study, staphylococcal superantigens were tested for their ability to induce procoagulant activity and tissue factor (TF) expression in human whole blood and in peripheral blood mononuclear cells. Methods and results:,Determination of clotting time showed that enterotoxin A, B and toxic shock syndrome toxin 1 from S. aureus induce procoagulant activity in whole blood and in mononuclear cells. The procoagulant activity was dependent on the expression of TF in monocytes since antibodies to TF inhibited the effect of the toxins and TF was detected on the surface of monocytes by flow cytometry. In the supernatants from staphylococcal toxin-stimulated mononuclear cells, interleukin (IL)-1, was detected by ELISA. Furthermore, the increased procoagulant activity and TF expression in monocytes induced by the staphylococcal toxins were inhibited in the presence of IL-1 receptor antagonist, a natural inhibitor of IL-1,. Conclusions:,The present study shows that superantigens from S. aureus activate the extrinsic coagulation pathway by inducing expression of TF in monocytes, and that the expression is mainly triggered by superantigen-induced IL-1, release. [source]


Endothelial nitric oxide synthase and nitric oxide regulate endothelial tissue factor expression in vivo in the sickle transgenic mouse,

AMERICAN JOURNAL OF HEMATOLOGY, Issue 1 2010
Anna Solovey
Activation of the coagulation system is a characteristic feature of sickle cell anemia, which also includes clinical thrombosis. The sickle transgenic mouse abnormally expresses tissue factor (TF) on the pulmonary vein endothelium. Knowing that this aberrancy is stimulated by inflammation, we sought to determine whether nitric oxide (NO) contributes to regulation of endothelial TF expression in the sickle mouse model. We used the NY1DD sickle mouse, which exhibits a low-TF to high-TF phenotype switch on exposure to hypoxia/reoxygenation. Manipulations of NO biology, such as breathing NO or addition of arginine or L -NAME (N -nitro- L -arginine-methyl-ester) to the diet, caused significant modulations of TF expression. This was also seen in hBERK1 sickle mice, which have a different genetic background and already have high-TF even at ambient air. Study of NY1DD animals bred to overexpress endothelial nitric oxide synthase (eNOS; eNOS-Tg) or to have an eNOS knockout state (one eNOS,/, animal and several eNOS+/, animals) demonstrated that eNOS modulates endothelial TF expression in vivo by down-regulating it. Thus, the biodeficiency of NO characteristic of patients with sickle cell anemia may heighten risk for activation of the coagulation system. Am. J. Hematol., 2010. © 2009 Wiley-Liss, Inc. [source]


The inhibition of platelet aggregation and blood coagulation by Micropechis ikaheka venom

BRITISH JOURNAL OF HAEMATOLOGY, Issue 4 2001
I. B. Sundell
Uncoagulable blood and life-threatening bleeding can result from the action of some snake venom toxins on haemostatic components of blood and vessel walls. Although envenoming by Micropechis ikaheka primarily affects neurones and muscle cells causing post-synaptic neuromuscular blockade and rhabdomyolysis, disturbances of haemostasis also occur. Therefore, the present study explored the effects of M. ikaheka venom on platelets and endothelium, which are important components of the haemostatic mechanism. The venom inhibited platelet aggregation in response to ADP and collagen, and also delayed clotting dependent on platelet activation or endothelial cell tissue factor expression. Some of these effects were reduced by the incubation of venom with a phospholipase A2 (PLA2) inhibitor and could be reproduced by a 17 kDa venom fraction containing a PLA2. In addition, an 11 kDa fraction containing a long-chain neurotoxin reduced ADP-induced aggregation. The venom was also found to reduce endothelial cell adherence to vitronectin-, fibronectin- and collagen-coated surfaces. These results suggest that, by inhibiting procoagulant activities of platelets and endothelial cells, a 17 kDa PLA2 plays an important role in the anticoagulant action of M. ikaheka venom. [source]