Home About us Contact | |||
Tissue Depth (tissue + depth)
Selected AbstractsFacial Soft Tissue Depths in Craniofacial Identification (Part I): An Analytical Review of the Published Adult Data,JOURNAL OF FORENSIC SCIENCES, Issue 6 2008Carl N. Stephan Ph.D. Abstract:, With the ever increasing production of average soft tissue depth studies, data are becoming increasingly complex, less standardized, and more unwieldy. So far, no overarching review has been attempted to determine: the validity of continued data collection; the usefulness of the existing data subcategorizations; or if a synthesis is possible to produce a manageable soft tissue depth library. While a principal components analysis would provide the best foundation for such an assessment, this type of investigation is not currently possible because of a lack of easily accessible raw data (first, many studies are narrow; second, raw data are infrequently published and/or stored and are not always shared by some authors). This paper provides an alternate means of investigation using an hierarchical approach to review and compare the effects of single variables on published mean values for adults whilst acknowledging measurement errors and within-group variation. The results revealed: (i) no clear secular trends at frequently investigated landmarks; (ii) wide variation in soft tissue depth measures between different measurement techniques irrespective of whether living persons or cadavers were considered; (iii) no clear clustering of non-Caucasoid data far from the Caucasoid means; and (iv) minor differences between males and females. Consequently, the data were pooled across studies using weighted means and standard deviations to cancel out random and opposing study-specific errors, and to produce a single soft tissue depth table with increased sample sizes (e.g., 6786 individuals at pogonion). [source] Facial Soft Tissue Depths in Craniofacial Identification (Part II): An Analytical Review of the Published Sub-Adult Data,JOURNAL OF FORENSIC SCIENCES, Issue 6 2008Carl N. Stephan Ph.D. Abstract:, Prior research indicates that while statistically significant differences exist between subcategories of the adult soft tissue depth data, magnitudes of difference are small and possess little practical meaning when measurement errors and variations between measurement methods are considered. These findings raise questions as to what variables may or may not hold meaning for the sub-adult data. Of primary interest is the effect of age, as these differences have the potential to surpass the magnitude of measurement error. Data from the five studies in the literature on sub-adults which describe values for single integer age groups were pooled and differences across the ages examined. From 1 to 18 years, most soft tissue depth measurements increased by less than 3 mm. These results suggest that dividing the data for children into more than two age groups is unlikely to hold many advantages. Data were therefore split into two groups with the division point corresponding to the mid-point of the observed trends and main data density (0,11 and 12,18 years; division point = 11.5 years). Published sub-adult data for seven further studies which reported broader age groups were pooled with the data above to produce the final tallied soft tissue depth tables. These tables hold the advantages of increased sample sizes (pogonion has greater than 1770 individuals for either age group) and increased levels of certainty (as random and opposing systematic errors specific to each independent study should average out when the data are combined). [source] The amount of newly formed bone in sinus grafting procedures depends on tissue depth as well as the type and residual amount of the grafted materialJOURNAL OF CLINICAL PERIODONTOLOGY, Issue 2 2005Zvi Artzi Abstract Objectives: Bone replacement substitutes are almost unavoidable in augmentation procedures such as sinus grafting. The objective of the present study was to evaluate the osteoconductive capability of two different scaffold fillers in inducing newly formed bone in this procedure. Material and Methods: Sinus floor augmentation and implant placement were carried out bilaterally in 12 patients. Bovine bone mineral (BBM) was grafted on one side and , -tricalcium phosphate (, -TCP) on the contralateral side. Both were mixed (1:1 ratio) with autogenous cortical bone chips harvested from the mandible by a scraper. Hard tissue specimen cores were retrieved from the augmented sites (at the previous window area) at 12 months. Decalcified sections were stained with haematoxylin,eosin and the fraction area of new bone and filler particles was measured. In addition to the effect of the filler on new bone formation, the latter was tested to determine whether it correlated with the tissue depth and residual amount of the grafted material. Results: Bone area fraction increased significantly from peripheral to deeper areas at both grafted sites in all cores: from 26.0% to 37.7% at the , -TCP sites and from 33.5% to 53.7% at the BBM-grafted sites. At each depth the amount of new bone in BBM sites was significantly greater than that in TCP sites. However, the average area fraction of grafted material particles was similar in both fillers and all depth levels (, -TCP=27.9,23.2% and BBM=29.2,22.6%, NS). A significant negative correlation was found between bone area fraction and particle area fraction at the middle (p=0.009) and deep (p=0.014) depths in the , -TCP sites, but not at the BBM sites. Conclusion: At 12 months post-augmentation, the two examined bone fillers, , -TCP and BBM, promoted new bone formation in sinus grafting but the amount of newly formed bone was significantly greater in BBM-grafted sites. However, both exhibited similar residual grafted material area fraction at this healing period. This could imply that BBM possesses better osteoconductive properties. [source] Biomechanics of cartilage articulation: Effects of lubrication and degeneration on shear deformationARTHRITIS & RHEUMATISM, Issue 7 2008Benjamin L. Wong Objective To characterize cartilage shear strain during articulation, and the effects of lubrication and degeneration. Methods Human osteochondral cores from lateral femoral condyles, characterized as normal or mildly degenerated based on surface structure, were selected. Under video microscopy, pairs of osteochondral blocks from each core were apposed, compressed 15%, and subjected to relative lateral motion with synovial fluid (SF) or phosphate buffered saline (PBS) as lubricant. When cartilage surfaces began to slide steadily, shear strain (Exz) and modulus (G) overall in the full tissue thickness and also as a function of depth from the surface were determined. Results In normal tissue with SF as lubricant, Exz was highest (0.056) near the articular surface and diminished monotonically with depth, with an overall average Exz of 0.028. In degenerated cartilage with SF as lubricant, Exz near the surface (0.28) was 5-fold that of normal cartilage and localized there, with an overall Exz of 0.041. With PBS as lubricant, Exz values near the articular surface were ,50% higher than those observed with SF, and overall Exz was 0.045 and 0.062 in normal and degenerated tissue, respectively. Near the articular surface, G was lower with degeneration (0.06 MPa, versus 0.18 MPa in normal cartilage). In both normal and degenerated cartilage, G increased with tissue depth to 3,4 MPa, with an overall G of 0.26,0.32 MPa. Conclusion During articulation, peak cartilage shear is highest near the articular surface and decreases markedly with depth. With degeneration and diminished lubrication, the markedly increased cartilage shear near the articular surface may contribute to progressive cartilage deterioration and osteoarthritis. [source] Facial Soft Tissue Thicknesses in Australian Adult Cadavers,JOURNAL OF FORENSIC SCIENCES, Issue 1 2006Monica Domaracki B.Sc. ABSTRACT: Craniofacial identification methods heavily rely on the knowledge of average soft tissue depths. This study measured soft tissue thicknesses of an Australian cadaver sample (N=33) using published needle puncture techniques at 13 anatomical locations. Data were compared and contrasted with other studies that used essentially identical samples and methods. Full descriptive statistics were calculated for measurements made in this study and means, medians, and modes were reported. Differences between mean values for males and females were found to be minimal (2.2 mm or less) and considerable overlap was found between the groups. There were no statistically significant differences between the soft tissue depths of the sexes (P>0.05). These findings indicate that differences between male and female soft tissue depths are of little practical significance for craniofacial identification and, therefore, data (means, standard deviations, and sample sizes) reported for Australians were pooled across the sexes and the studies. Although these new pooled means have increased statistical power, data distributions at some landmarks were skewed and thus emphasis is placed on median and modes reported for this study rather than upon the collapsed data means. [source] |