Tiller Production (tiller + production)

Distribution by Scientific Domains


Selected Abstracts


Control of tiller recruitment in bunchgrasses: uniting physiology and ecology

FUNCTIONAL ECOLOGY, Issue 4 2004
K. W. TOMLINSON
Summary 1Bunchgrasses are clonal plants whose dominance of moist grasslands worldwide is maintained largely through tiller recruitment. Tiller recruitment in clonal plants is a subset of the problem of lateral bud outgrowth in higher plants. This paper proposes that three currently competing hypotheses of lateral bud outgrowth , apical dominance; the nutrition hypothesis; and photosensitivity to the red : far-red light ratio , all operate in a manner dependent on environment and plant form. 2The evidence for each hypothesis is reviewed, following which an integrated model is provided that links the three hypotheses into a cohesive strategy. Consequently we assess tiller recruitment by bunchgrasses in terms of the constraints of their functional growth form and their environment. Of the mineral nutrients, only nitrogen is considered because it is the only nutrient whose relationship with tiller recruitment is well established. 3The integrated model maintains the accepted paradigm that actual bud release is hormonally controlled by the auxin : cytokinin ratio, although local nutrient concentrations may also be inhibitory. Importantly, each hormone is controlled by local signals in the shoots and roots, respectively, facilitating appropriate responses to environmental conditions. Auxin production and export from the shoots is moderated by phytochrome responses to red : far-red light ratios. Cytokinin production is mediated by root N concentration which, in turn, is a function of N absorption from the soil and seasonal reallocation of tissue N. 4The growth form of bunchgrasses and the environment in which they are found emphasize that N has a strong mediatory role over tiller production which allows the grass plant to respond appropriately to shifts in this limiting resource. This suggests that control of lateral bud outgrowth may have an evolutionary basis in resource competition for N. [source]


Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytes

FUNCTIONAL ECOLOGY, Issue 6 2000
G. P. Cheplick
Abstract 1Grass leaves are often inhabited by fungal endophytes that can enhance host growth. In some forage species, endophytes improve host resistance to, and recovery from, drought. 2Our objective was to determine if the growth of genotypes of Lolium perenne L. was improved by endophytes during recovery from drought. 3Thirteen infected genotypes were cloned into ramets. Half were treated with a systemic fungicide to eliminate the endophyte (E,); half were untreated and retained high endophyte levels (E+). In a glasshouse, half of all E, and E+ ramets were watered regularly, whilst half were exposed to a 2 week drought on two occasions, each followed by a 3 week recovery period. 4After the first drought and recovery period, endophytes significantly reduced tiller production in the drought-stressed group. 5After the second drought and recovery period, effects of drought on live leaf area and dry mass were highly dependent on host genotype, but not endophytes. The mean tiller mass of E+ ramets after drought was significantly less than that of watered E+ ramets, but this was not true in E, ramets. For six genotypes there was greater mass allocation to storage in the tiller bases of E, ramets after drought. 6This perennial ryegrass population showed marked genotypic variation in the ability to recover from drought stress, but endophytes played little or no role in this ability. For some host genotypes there may be a metabolic cost of harbouring endophytes during environmentally stressful conditions. [source]


Are more productive varieties of Paspalum dilatatum less tolerant to drought?

GRASS & FORAGE SCIENCE, Issue 3 2010
L. L. Couso
Abstract Paspalum dilatatum Poir., is a perennial C4 grass widely distributed in the Argentinean Pampas. The response to water availability for materials developed with forage-production purposes is unknown. We hypothesized that genetic differences between commercial varieties are reflected in their regrowth capacity under water stress. The effect of five levels of constant water supply on three plant varieties (two derived from apomictic materials: ,Relincho' and ,Alonso' and one from sexually-derived material: ,Primo') were examined in the greenhouse. Leaf- and plant-response traits were followed during 38 d after a single defoliation event. Seven response variables were measured: three of them were morphogenetic (leaf elongation rate, leaf appearance rate and leaf elongation duration) and four were structural (number of live leaves, lamina length, tiller biomass and tiller production). The sexual material showed higher values for growth variables than the apomictic varieties (leaf elongation rate, leaf length and tiller biomass) across the environmental range. Apomictic varieties showed a proportionally similar drought response to the sexual material for the seven variables. No intra-specific trade-off (statistical interaction) was found between growth under high water availability conditions and drought tolerance. [source]


Environmental stresses mediate endophyte,grass interactions in a boreal archipelago

JOURNAL OF ECOLOGY, Issue 2 2010
Nora M. Saona
Summary 1.,Both evolutionary theory and empirical evidence from agricultural research support the view that asexual, vertically transmitted fungal endophytes are typically plant mutualists that develop high infection frequencies within host grass populations. In contrast, endophyte,grass interactions in natural ecosystems are more variable, spanning the range from mutualism to antagonism and comparatively little is known about their range of response to environmental stress. 2.,We examined patterns in endophyte prevalence and endophyte,grass interactions across nutrient and grazing (from Greylag and Canada geese) gradients in 15 sites with different soil moisture levels in 13 island populations of the widespread grass Festuca rubra in a boreal archipelago in Sweden. 3.,In the field, endophyte prevalence levels were generally low (range = 10,53%) compared with those reported from agricultural systems. Under mesic-moist conditions endophyte prevalence was constantly low (mean prevalence = 15%) and was not affected by grazing pressure or nutrient availability. In contrast, under conditions of drought, endophyte prevalence increased from 10% to 53% with increasing nutrient availability and increasing grazing pressure. 4.,In the field, we measured the production of flowering culms, as a proxy for host fitness, to determine how endophyte-infected plants differed from uninfected plants. At dry sites, endophyte infection did not affect flowering culm production. In contrast, at mesic-moist sites production of flowering culms in endophyte-infected plants increased with the covarying effects of increasing nutrient availability and grazing pressure, indicating that the interaction switched from antagonistic to mutualistic. 5.,A concurrent glasshouse experiment showed that in most situations, the host appears to incur some costs for harbouring endophytes. Uninfected grasses generally outperformed infected grasses (antagonistic interaction), while infected grasses outperformed uninfected grasses (mutualistic interaction) only in dry, nutrient-rich conditions. Nutrient and water addition affected tiller production, leaf number and leaf length differently, suggesting that tillers responded with different strategies. This emphasizes that several response variables are needed to evaluate the interaction. 6.,Synthesis. This study found complex patterns in endophyte prevalence that were not always correlated with culm production. These contrasting patterns suggest that the direction and strength of selection on infected plants is highly variable and depends upon a suite of interacting environmental variables that may fluctuate in the intensity of their impact, during the course of the host life cycle. [source]