Tight Correlation (tight + correlation)

Distribution by Scientific Domains


Selected Abstracts


Evolution of bite performance in turtles

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2002
A. Herrel
Abstract Among vertebrates, there is often a tight correlation between variation in cranial morphology and diet. Yet, the relationships between morphological characteristics and feeding performance are usually only inferred from biomechanical models. Here, we empirically test whether differences in body dimensions are correlated with bite performance and trophic ecology for a large number of turtle species. A comparative phylogenetic analysis indicates that turtles with carnivorous and durophagous diets are capable of biting harder than species with other diets. This pattern is consistent with the hypothesis that an evolutionary increase in bite performance has allowed certain turtles to consume harder or larger prey. Changes in carapace length tend to be associated with proportional changes in linear head dimensions (no shape change). However, maximum bite force tends to change in proportion to length cubed, rather than length squared, implying that changes in body size are associated with changes in the design of the jaw apparatus. After the effect of body size is accounted for in the analysis, only changes in head height are significantly correlated with changes in bite force. Additionally, our data suggest that the ability to bite hard might trade off with the ability to feed on fast agile prey. Rather than being the direct result of conflicting biomechanical or physiological demands for force and speed, this trade-off may be mediated through the constraints imposed by the need to retract the head into the shell for defensive purposes. [source]


Dust mass-loss rates from asymptotic giant branch stars in the Fornax and Sagittarius dwarf spheroidal galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
Eric Lagadec
ABSTRACT To study the effect of metallicity on the mass-loss rate of asymptotic giant branch (AGB) stars, we have conducted mid-infrared photometric measurements of such stars in the Sagittarius and Fornax dwarf spheroidal galaxies with the 10-,m camera VISIR at the Very Large Telescope. We derive mass-loss rates for 29 AGB stars in Sgr dSph and two in Fornax. The dust mass-loss rates are estimated from the K,[9] and K,[11] colours. Radiative transfer models are used to check the consistency of the method. Published IRAS and Spitzer data confirm that the same tight correlation between K,[12] colour and dust mass-loss rates is observed for AGB stars from galaxies with different metallicities, i.e., the Galaxy, the Large Magellanic Clouds and the Small Magellanic Clouds. The derived dust mass-loss rates are in the range 5 × 10,10 to 3 × 10,8 M, yr,1 for the observed AGB stars in Sgr dSph and around 5 × 10,9 M, yr,1 for those in Fornax; while values obtained with the two different methods are of the same order of magnitude. The mass-loss rates for these stars are higher than the nuclear burning rates, so they will terminate their AGB phase by the depletion of their stellar mantles before their core can grow significantly. Some observed stars have lower mass-loss rates than the minimum value predicted by theoretical models. [source]


The UV properties of E+A galaxies: constraints on feedback-driven quenching of star formation

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2007
S. Kaviraj
ABSTRACT We present the first large-scale study of E+A galaxies that incorporates photometry in the ultraviolet (UV) wavelengths. E+A galaxies are ,post-starburst' systems, with strong Balmer absorption lines indicating significant recent star formation, but without [O ii] and H, emission lines which are characteristic of ongoing star formation. The starburst that creates the E+A galaxy typically takes place within the last Gyr and creates a high fraction (20,60 per cent) of the stellar mass in the remnant over a short time-scale (<0.1 Gyr). We find a tight correlation between the luminosity of our E+A galaxies and the implied star formation rate (SFR) during the starburst. While low-luminosity E+As [M(z) > ,20] exhibit implied SFRs of less than 50 M, yr,1, their luminous counterparts [M(z) < ,22] show SFRs greater than 300 and as high as 2000 M, yr,1, suggesting that luminous and ultra-luminous infrared galaxies in the low-redshift Universe could be the progenitors of massive nearby E+A galaxies. We perform a comprehensive study of the characteristics of the quenching that truncates the starburst in E+A systems. We find that, for galaxies less massive than 1010 M,, the quenching efficiency decreases as the galaxy mass increases. However, for galaxies more massive than 1010 M,, this trend is reversed and the quenching efficiency increases with galaxy mass. Noting that the mass threshold at which this reversal occurs is in excellent agreement with the mass above which active galactic nuclei (AGN) become significantly more abundant in nearby galaxies, we use simple energetic arguments to show that the bimodal behaviour of the quenching efficiency is consistent with AGN and supernovae (SN) being the principal sources of negative feedback above and below M, 1010 M,, respectively. The arguments assume that quenching occurs through the mechanical ejection or dispersal of the gas reservoir and that, in the high-mass regime (M > 1010 M,), the Eddington ratios in this sample of galaxies scale as M,, where 1 < , < 3. Finally, we use our E+A sample to estimate the time it takes for galaxies to migrate from the blue cloud to the red sequence. We find migration times between 1 and 5 Gyr, with a median value of 1.5 Gyr. [source]


The SAURON project , IV.

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
The mass-to-light ratio, lenticular galaxies, the Fundamental Plane of elliptical, the virial mass estimator
ABSTRACT We investigate the well-known correlations between the dynamical mass-to-light ratio (M/L) and other global observables of elliptical (E) and lenticular (S0) galaxies. We construct two-integral Jeans and three-integral Schwarzschild dynamical models for a sample of 25 E/S0 galaxies with SAURON integral-field stellar kinematics to about one effective (half-light) radius Re. They have well-calibrated I -band Hubble Space Telescope WFPC2 and large-field ground-based photometry, accurate surface brightness fluctuation distances, and their observed kinematics is consistent with an axisymmetric intrinsic shape. All these factors result in an unprecedented accuracy in the M/L measurements. We find a tight correlation of the form (M/L) = (3.80 ± 0.14) × (,e/200 km s,1)0.84±0.07 between the M/L (in the I band) measured from the dynamical models and the luminosity-weighted second moment ,e of the LOSVD within Re. The observed rms scatter in M/L for our sample is 18 per cent, while the inferred intrinsic scatter is ,13 per cent. The (M/L),,e relation can be included in the remarkable series of tight correlations between ,e and other galaxy global observables. The comparison of the observed correlations with the predictions of the Fundamental Plane (FP), and with simple virial estimates, shows that the ,tilt' of the FP of early-type galaxies, describing the deviation of the FP from the virial relation, is almost exclusively due to a real M/L variation, while structural and orbital non-homology have a negligible effect. When the photometric parameters are determined in the ,classic' way, using growth curves, and the ,e is measured in a large aperture, the virial mass appears to be a reliable estimator of the mass in the central regions of galaxies, and can be safely used where more ,expensive' models are not feasible (e.g. in high-redshift studies). In this case the best-fitting virial relation has the form (M/L)vir= (5.0 ± 0.1) ×Re,2e/(LG), in reasonable agreement with simple theoretical predictions. We find no difference between the M/L of the galaxies in clusters and in the field. The comparison of the dynamical M/L with the (M/L)pop inferred from the analysis of the stellar population, indicates a median dark matter fraction in early-type galaxies of ,30 per cent of the total mass inside one Re, in broad agreement with previous studies, and it also shows that the stellar initial mass function varies little among different galaxies. Our results suggest a variation in M/L at constant (M/L)pop, which seems to be linked to the galaxy dynamics. We speculate that fast-rotating galaxies have lower dark matter fractions than the slow-rotating and generally more-massive ones. If correct, this would suggest a connection between the galaxy assembly history and the dark matter halo structure. The tightness of our correlation provides some evidence against cuspy nuclear dark matter profiles in galaxies. [source]


Multiwavelength study of the nuclei of a volume-limited sample of galaxies , I. X-ray observations

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2000
P. Lira
We discuss ROSAT HRI X-ray observations of 33 very nearby galaxies, sensitive to X-ray sources down to a luminosity of approximately 1038 erg s,1. The galaxies are selected from a complete, volume-limited sample of 46 galaxies with for which we have extensive multiwavelength data. For an almost complete subsample with (29/31 objects) we have HRI images. Contour maps and source lists are presented within the central region of each galaxy, together with nuclear upper limits where no nuclear source was detected. Nuclear X-ray sources are found to be very common, occurring in ,35 per cent of the sample. Nuclear X-ray luminosity is statistically connected to host galaxy luminosity , there is not a tight correlation, but the probability of a nuclear source being detected increases strongly with galaxy luminosity, and the distribution of nuclear luminosities seems to show an upper envelope that is roughly proportional to galaxy luminosity. While these sources do seem to be a genuinely nuclear phenomenon rather than nuclear examples of the general X-ray source population, it is far from obvious that they are miniature Seyfert nuclei. The more luminous nuclei are very often spatially extended, and H ii region nuclei are detected just as often as LINERs. Finally, we also note the presence of fairly common superluminous X-ray sources in the off-nuclear population , out of 29 galaxies we find nine sources with a luminosity greater than 1039 erg s,1. These show no particular preference for more luminous galaxies. One is already known to be a multiple SNR system, but most have no obvious optical counterpart and their nature remains a mystery. [source]


Quantitative-genetic analysis of leaf-rust resistance in seedling and adult-plant stages of inbred lines and their testcrosses in winter rye

PLANT BREEDING, Issue 6 2002
T. Miedaner
Abstract Leaf rust is the most frequent leaf disease of winter rye in Germany. All widely grown population and hybrid varieties are susceptible. This study was undertaken to estimate quantitative-genetic parameters of leaf-rust resistance in self-fertile breeding materials with introgressed foreign leaf-rust resistances and to analyze the relative importance of seedling and adult-plant resistance. Forty-four inbred lines and their corresponding testcrosses with a highly susceptible tester line were grown in a field in four different environments (location-year combinations) with artificial inoculation. Plots were separated by a nonhost to promote autoinfections and minimize interplot interference. Leaf-rust severity was rated on three leaf insertions at three dates. The testcrosses showed a considerably higher disease severity than the lines. High correlations (r , 0.9, P = 0.01) existed among the leaf insertions and the rating dates. Large genotypic variation for resistance was found in both the inbred and testcross populations. Genotype-environment interaction and error variances were of minor importance, thus high entry-mean heritabilities were achieved. A tight correlation between the inbreds and their corresponding testcrosses was found (r = 0.88, P = 0.01). Heterosis for resistance was significant (P = 0.05), but not very important. In a seedling test with 20,30 single-pustule isolates, 34 out of 44 inbreds reacted race-specifically. From the remaining inbred lines, three were medium and seven highly susceptible. In a further greenhouse test with 16 inbreds, seven were susceptible and five were resistant in both seedling and adult-plant stages. The remaining four lines had adult-plant resistance. In conclusion, race-specific leaf-rust resistance can be selected among inbred lines per se. Lines should also be tested in the adult-plant stage. [source]


The SAURON project , IV.

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
The mass-to-light ratio, lenticular galaxies, the Fundamental Plane of elliptical, the virial mass estimator
ABSTRACT We investigate the well-known correlations between the dynamical mass-to-light ratio (M/L) and other global observables of elliptical (E) and lenticular (S0) galaxies. We construct two-integral Jeans and three-integral Schwarzschild dynamical models for a sample of 25 E/S0 galaxies with SAURON integral-field stellar kinematics to about one effective (half-light) radius Re. They have well-calibrated I -band Hubble Space Telescope WFPC2 and large-field ground-based photometry, accurate surface brightness fluctuation distances, and their observed kinematics is consistent with an axisymmetric intrinsic shape. All these factors result in an unprecedented accuracy in the M/L measurements. We find a tight correlation of the form (M/L) = (3.80 ± 0.14) × (,e/200 km s,1)0.84±0.07 between the M/L (in the I band) measured from the dynamical models and the luminosity-weighted second moment ,e of the LOSVD within Re. The observed rms scatter in M/L for our sample is 18 per cent, while the inferred intrinsic scatter is ,13 per cent. The (M/L),,e relation can be included in the remarkable series of tight correlations between ,e and other galaxy global observables. The comparison of the observed correlations with the predictions of the Fundamental Plane (FP), and with simple virial estimates, shows that the ,tilt' of the FP of early-type galaxies, describing the deviation of the FP from the virial relation, is almost exclusively due to a real M/L variation, while structural and orbital non-homology have a negligible effect. When the photometric parameters are determined in the ,classic' way, using growth curves, and the ,e is measured in a large aperture, the virial mass appears to be a reliable estimator of the mass in the central regions of galaxies, and can be safely used where more ,expensive' models are not feasible (e.g. in high-redshift studies). In this case the best-fitting virial relation has the form (M/L)vir= (5.0 ± 0.1) ×Re,2e/(LG), in reasonable agreement with simple theoretical predictions. We find no difference between the M/L of the galaxies in clusters and in the field. The comparison of the dynamical M/L with the (M/L)pop inferred from the analysis of the stellar population, indicates a median dark matter fraction in early-type galaxies of ,30 per cent of the total mass inside one Re, in broad agreement with previous studies, and it also shows that the stellar initial mass function varies little among different galaxies. Our results suggest a variation in M/L at constant (M/L)pop, which seems to be linked to the galaxy dynamics. We speculate that fast-rotating galaxies have lower dark matter fractions than the slow-rotating and generally more-massive ones. If correct, this would suggest a connection between the galaxy assembly history and the dark matter halo structure. The tightness of our correlation provides some evidence against cuspy nuclear dark matter profiles in galaxies. [source]


Acute mountain sickness is associated with sleep desaturation at high altitude

RESPIROLOGY, Issue 4 2004
Keith R. BURGESS
Objective: This study was intended to demonstrate a biologically important association between acute mountain sickness (AMS) and sleep disordered breathing. Methodology: A total of 14 subjects (eight males, six females aged 36 ± 10 years) were studied at six different altitudes from sea level to 5050 m over 12 days on a trekking route in the Nepal Himalaya. AMS was quantified by Lake Louise (LL) score. At each altitude, sleep was studied by 13 channel polysomnography (PSG). Resting arterial blood gases (ABG) and exercise SaO2 were measured. Ventilatory responses (VR) were measured at sea level. Individual data were analysed for association at several altitudes and mean data were analysed for association over all altitudes. Results: ABG showed partial acclimatization. For the mean data, there were strong positive correlations between LL score and altitude, and periodic breathing, as expected. Strong negative correlations existed between LL score and PaO2, PaCO2, sleep SaO2 and exercise SaO2, but there was no correlation with sea level VR. There were equally tight correlations between LLs/PaO2 and LL score/sleep SaO2. The individual data showed no significant correlations with LL score at any altitude, probably reflecting the non-steady state nature of the experiment. In addition, mean SaO2 during sleep was similar to minimum exercise SaO2 at each altitude and minimum sleep SaO2 was lower, suggesting that the hypoxic insult during sleep was equivalent to or greater than walking at high altitude. Conclusions: It is concluded that desaturation during sleep has a biologically important association with AMS, and it is speculated that under similar conditions (trekking) it is an important cause of AMS. [source]