Thrust Propagation (thrust + propagation)

Distribution by Scientific Domains


Selected Abstracts


Provenance of siliciclastic and hybrid turbiditic arenites of the Eocene Hecho Group, Spanish Pyrenees: implications for the tectonic evolution of a foreland basin

BASIN RESEARCH, Issue 2 2010
M. A. Caja
ABSTRACT The Eocene Hecho Group turbidite system of the Aínsa-Jaca foreland Basin (southcentral Pyrenees) provides an excellent opportunity to constrain compositional variations within the context of spatial and temporal distribution of source rocks during tectonostratigraphic evolution of foreland basins. The complex tectonic setting necessitated the use of petrographic, geochemical and multivariate statistical techniques to achieve this goal. The turbidite deposits comprise four unconformity-bounded tectonostratigraphic units (TSU), consisting of quartz-rich and feldspar-poor sandstones, calclithites rich in extrabasinal carbonates and hybrid arenites dominated by intrabasinal carbonates. The sandstones occur exclusively in TSU-2, whereas calclithites and hybrid arenites occur in the overlying TSU-3, TSU-4 and TSU-5. The calclithites were deposited at the base of each TSU and hybrid arenites in the uppermost parts. Extrabasinal carbonate sources were derived from the fold-and-thrust belt (mainly Cretaceous and Palaeocene limestones). Conversely, intrabasinal carbonate grains were sourced from foramol shelf carbonate factories. This compositional trend is attributed to alternating episodes of uplift and thrust propagation (siliciclastic and extrabasinal carbonates supplies) and subsequent episodes of development of carbonate platforms supplying intrabasinal detrital grains. The quartz-rich and feldspar-poor composition of the sandstones suggests derivation from intensely weathered cratonic basement rocks during the initial fill of the foreland basin. Successive sediments (calclithites and hybrid arenites) were derived from older uplifted basement rocks (feldspar-rich and, to some extent, rock fragments-rich sandstones), thrust-and-fold belt deposits and from coeval carbonate platforms developed at the basin margins. This study demonstrates that the integration of tectono-stratigraphy, petrology and geochemistry of arenites provides a powerful tool to constrain the spatial and temporal variation in provenance during the tectonic evolution of foreland basins. [source]


Modelling interactions between fold,thrust belt deformation, foreland flexure and surface mass transport

BASIN RESEARCH, Issue 2 2006
Guy D. H. Simpson
ABSTRACT Interactions between fold and thrust belt deformation, foreland flexure and surface mass transport are investigated using a newly developed mathematical model incorporating fully dynamic coupling between mechanics and surface processes. The mechanical model is two dimensional (plane strain) and includes an elasto-visco-plastic rheology. The evolving model is flexurally compensated using an elastic beam formulation. Erosion and deposition at the surface are treated in a simple manner using a linear diffusion equation. The model is solved with the finite element method using a Lagrangian scheme with marker particles. Because the model is particle based, it enables straightforward tracking of stratigraphy and exhumation paths and it can sustain very large strain. It is thus ideally suited to study deformation, erosion and sedimentation in fold,thrust belts and foreland basins. The model is used to investigate how fold,thrust deformation and foreland basin development is influenced by the non-dimensional parameter , which can be interpreted as the ratio of the deformation time scale to the time scale for surface processes. Large values of imply that the rate of surface mass transport is significantly greater than the rate of deformation. When , the rates of surface processes are so slow that one observes a classic propagating fold,thrust belt with well-developed wedge top basins and a largely underfilled foreland flexural depression. Increasing causes (1) deposition to shift progressively from the wedge top into the foredeep, which deepens and may eventually become filled, (2) widespread exhumation of the fold,thrust belt, (3) reduced rates of frontal thrust propagation and possible attainment of a steady-state orogen width and (4) change in the style and dynamics of deformation. Together, these effects indicate that erosion and sedimentation, rather than passively responding to tectonics, play an active and dynamic role in the development of fold,thrust belts and foreland basins. Results demonstrate that regional differences in the relative rates of surface processes (e.g. because of different climatic settings) may lead to fold,thrust belts and foreland basins with markedly different characteristics. Results also imply that variations in the efficiency of surface processes through time (e.g., because of climate change or the emergence of orogens above sea level) may cause major temporal changes in orogen and basin dynamics. [source]


Basin- and Mountain-Building Dynamic Model of "Ramping-Detachment-Compression" in the West Kunlun-Southern Tarim Basin Margin

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2008
CUI Junwen
Abstract: Analysis of the deformation structures in the West Kunlun-Tarim basin-range junction belt indicates that sediments in the southwestern Tarim depression were mainly derived from the West Kunlun Mountains and that with time the region of sedimentation extended progressively toward the north. Three north-underthrusting (subducting), steep-dipping, high-velocity zones (bodies) are recognized at depths, which correspond to the central West Kunlun junction belt (bounded by the Küda-Kaxtax fault on the north and Bulungkol-Kangxiwar fault on the south), Quanshuigou fault belt (whose eastward extension is the Jinshajiang fault belt) and Bangong Co-Nujiang fault belt. The geodynamic process of the basin-range junction belt generally proceeded as follows: centering around the magma source region (which largely corresponds with the Karatag terrane at the surface), the deep-seated material flowed and extended from below upward and to all sides, resulting in strong deformation (mainly extension) in the overlying lithosphere and even the upper mantle, appearance of extensional stress perpendicular to the strike of the orogenic belt in the thermal uplift region or at the top of the mantle diapir and localized thickening of the sedimentary cover (thermal subsidence in the upper crust). Three stages of the basin- and mountain-forming processes in the West Kunlun-southern Tarim basin margin may be summarized: (1) the stage of Late Jurassic-Early Cretaceous ramping-rapid uplift and rapid subsidence, when north-directed thrust propagation and south-directed intracontinental subduction, was the dominant mechanism for basin- and mountain-building processes; (2) the stage of Late Cretaceous-Paleogene deep-level detachment-slow uplift and homogeneous subsidence, when the dominant mechanism for the basin- and mountain-forming processes was detachment (subhorizontal north-directed deep-level ductile shear) and its resulting lateral propagation of deep material; and (3) the stage of Neogene-present compression-rapid uplift and strong subsidence, when the basin- and mountain-forming processes were simultaneously controlled by north-vergent thrust propagation and compression. The authors summarize the processes as the "ramping-detachment-compression basin- and mountain-forming dynamic model". The basin-range tectonics was initiated in the Late Jurassic, the Miocene-Pliocene were a major transition period for the basin- and mountain-forming mechanism and the terminal early Pleistocene tectonic movement in the main laid a foundation for the basin-and-mountain tectonic framework in the West Kunlun-southern Tarim basin margin. [source]


The Altun Fault: Its Geometry, Nature and Mode of Growth

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2001
CUI Junwen
Abstract The Altun (or Altyn Tagh) fault displays a geometry of overlapping of linear and arcuate segments and shows strong inhomogeneity in time and space. It is a gigantic fault system with complex mechanical behaviours including thrusting, sinistral strike slip and normal slip. The strike slip and normal slip mainly occurred in the Cretaceous,Cenozoic and Plio-Quaternary respectively, whereas the thrusting was a deformation event that has played a dominant role since the late Palaeozoic (for a duration of about 305 Ma). The formation of the Altun fault was related to strong inhomogeneous deformation of the massifs on its two sides (in the hinterland of the Altun Mountains contractional deformation predominated and in the Qilian massif thrust propagation was dominant). The fault experienced a dynamic process of successive break-up and connection of its segments and gradual propagation, which was synchronous with the development of an overstep thrust sequence in the Qilian massif and the uplift of the Qinghai-Tibet plateau. With southward propagation of the thrust sequence and continued uplift of the plateau, the NE tip of the Altun fault moved in a NE direction, while the SW tip grew in a SW direction. [source]