Thrombotic Responses (thrombotic + response)

Distribution by Scientific Domains


Selected Abstracts


Differential effects of medroxyprogesterone acetate on thrombosis and atherosclerosis in mice

BRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2009
Till Freudenberger
Background and purpose:, The risk for cardiovascular events including venous and arterial disease and stroke is elevated after treatment with estrogen and medroxyprogesterone acetate (MPA) in postmenopausal women. Here, we have investigated the effect of MPA on arterial thrombosis and atherosclerosis in a murine model of atherosclerosis. Experimental approach:, Apolipoprotein E (ApoE),/, mice were bilaterally ovariectomized and treated with placebo, MPA (27.7 µg·day,1) and MPA + 17-,-oestradiol (E2; 1.1 µg·day,1) for 90 days, on a Western-type diet. Thrombotic response was measured in a photothrombosis model, platelet activation by fluorescence activated cell sorting (FACS) analysis (CD62P) and thrombin generation by the endogenous thrombin potential (ETP). Furthermore, aortic plaque burden and aortic root plaque composition were determined. Key results:, MPA and MPA + E2 -treated animals showed an aggravated thrombotic response shown by significantly reduced time to stable occlusion. The pro-thrombotic effect of MPA was paralleled by increased ETP whereas platelet activation was not affected. Furthermore, MPA + E2 reduced the number of cells positive for ,-smooth muscle actin and increased hyaluronan in the plaque matrix. Interestingly, total plaque burden was reduced by MPA but unchanged by MPA + E2. Conclusion and implications:, Long-term treatment with MPA and MPA + E2 increased arterial thrombosis despite inhibitory effects of MPA on atherosclerosis in ApoE-deficient mice. Increased thrombin formation, reduced smooth muscle content and remodelling of non-collagenous plaque matrix may be involved in the pro-thrombotic effects. Thus, MPA exhibits differential effects on arterial thrombosis and on atherosclerosis. [source]


Polymicrobial sepsis and endotoxemia promote microvascular thrombosis via distinct mechanisms

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 6 2010
K. N. PATEL
Summary.,Background:,We reported recently that endotoxemia promotes microvascular thrombosis in cremaster venules of wild-type mice, but not in mice deficient in toll-like receptor 4 (TLR4) or von Willebrand factor (VWF). Objective:,To determine whether the clinically relevant model of polymicrobial sepsis induced by cecal ligation/perforation (CLP) induces similar responses via the same mechanisms as endotoxemia. Methods:,We used a light/dye-injury model of thrombosis in the cremaster microcirculation of wild-type mice and mice deficient in toll-like receptor-4 (C57BL/10ScNJ), toll-like receptor 2 (TLR2), or VWF. Mice underwent CLP or sham surgery, or an intraperitoneal injection of endotoxin (LPS) or saline. In the CLP model, we assessed the influence of fluid replacement on thrombotic responses. Results:,Both CLP and LPS enhanced thrombotic occlusion in wild-type mice. In contrast to LPS, CLP enhanced thrombosis in TLR4- and VWF-deficient strains. While TLR2-deficient mice did not demonstrate enhanced thrombosis following CLP, LPS enhanced thrombosis in these mice. LPS, but not CLP, increased plasma VWF antigen relative to controls. Septic mice, particularly those undergoing CLP, developed significant hemoconcentration. Intravenous fluid replacement with isotonic saline prevented the hemoconcentration and prothrombotic responses to CLP, though fluids did not prevent the prothrombotic response to LPS. Conclusions:,Polymicrobial sepsis induced by CLP and endotoxemia promote microvascular thrombosis via distinct mechanisms; enhanced thrombosis induced by CLP requires TLR2 but not TLR4 or VWF. The salutary effects of intravenous fluid replacement on microvascular thrombosis in polymicrobial sepsis remain to be characterized. [source]


Thrombomodulin Improves Early Outcomes After Intraportal Islet Transplantation

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 6 2009
W Cui
Primary islet nonfunction due to an instant blood mediated inflammatory reaction (IBMIR) leads to an increase in donor islet mass required to achieve euglycemia. In the presence of thrombin, thrombomodulin generates activated protein C (APC), which limits procoagulant and proinflammatory responses. In this study, we postulated that liposomal formulations of thrombomodulin (lipo-TM), due to its propensity for preferential uptake in the liver, would enhance intraportal engraftment of allogeneic islets by inhibiting the IBMIR. Diabetic C57BL/6J mice underwent intraportal transplantation with B10.BR murine islets. In the absence of treatment, conversion to euglycemia was observed among 29% of mice receiving 250 allo-islets. In contrast, a single infusion of lipo-TM led to euglycemia in 83% of recipients (p = 0.0019). Fibrin deposition (p < 0.0001), neutrophil infiltration (p < 0.0001), as well as expression TNF-, and IL-, (p < 0.03) were significantly reduced. Significantly, thrombotic responses mediated by human islets in contact with human blood were also reduced by this approach. Lipo-TM improves the engraftment of allogeneic islets through a reduction in local thrombotic and inflammatory processes. As an enzyme-based pharmacotherapeutic, this strategy offers the potential for local generation of APC at the site of islet infusion, during the initial period of elevated thrombin production. [source]