Home About us Contact | |||
Threespine Stickleback (threespine + stickleback)
Selected AbstractsLOCAL HETEROZYGOSITY-FITNESS CORRELATIONS WITH GLOBAL POSITIVE EFFECTS ON FITNESS IN THREESPINE STICKLEBACKEVOLUTION, Issue 8 2006Mélissa Lieutenant-Gosselin Abstract The complex interactions between genetic diversity and evolution have important implications in many biological areas including conservation, speciation, and mate choice. A common way to study these interactions is to look at heterozygosity-fitness correlations (HFCs). Until recently, HFCs based on noncoding markers were believed to result primarily from global inbreeding effects. However, accumulating theoretical and empirical evidence shows that HFCs may often result from genes being linked to the markers used (local effect). Moreover, local effect HFCs could differ from global inbreeding effects in their direction and occurrence. Consequently, the investigation of the structure and consequences of local HFCs is emerging as a new important goal in evolutionary biology. In this study of a wild threespine stickleback (Gasterosteus aculeatus) population, we first tested the presence of significant positive or negative local effects of heterozygosity at 30 microsatellites loci on five fitness components: survival, mating success, territoriality, length, and body condition. Then, we evaluated the direction and shape of total impact of local HFCs, and estimated the magnitude of the impacts on fitness using regression coefficients and selection differentials. We found that multilocus heterozygosity was not a reliable estimator of individual inbreeding coefficient, which supported the relevance of single-locus based analyses. Highly significant and temporally stable local HFCs were observed. These were mainly positive, but negative effects of heterozygosity were also found. Strong and opposite effects of heterozygosity are probably present in many populations, but may be blurred in HFC analyses looking for global effects only. In this population, both negative and positive HFCs are apparently driving mate preference by females, which is likely to contribute to the maintenance of both additive and nonadditive genetic variance. [source] TEMPORAL VARIATION IN DIVERGENT SELECTION ON SPINE NUMBER IN THREESPINE STICKLEBACKEVOLUTION, Issue 12 2002T. E. Reimchen Abstract., Short-term temporal cycles in ecological pressures, such as shifts in predation regime, are widespread in nature yet estimates of temporal variation in the direction and intensity of natural selection are few. Previous work on threespine stickleback (Gasterosteus aculeatus) has revealed that dorsal and pelvic spines are a defense against gape-limited predators but may be detrimental against grappling insect predators. In this study, we examined a 15-year database from an endemic population of threespine stickleback to look for evidence of temporal shifts in exposure to these divergent predation regimes and correlated shifts in selection on spine number. For juveniles, we detected selection for increased spine number during winter when gape-limited avian piscivores were most common but selection for decreased spine number during summer when odonate predation was more common. For subadults and adults, which are taken primarily by avian piscivores, we predicted selection should generally be for increased spine number in all seasons. Among 59 comparisons, four selection differentials were significant (Bonferroni corrected) and in the predicted direction. However, there was also substantial variability in remaining differentials, including two examples with strong selection for spine reduction. These reversals were associated with increased tendency of the fish to shift to a benthic niche, as determined from examination of stomach contents. These dietary data suggest that increased encounter rates with odonate predation select for spine reduction. Strong selection on spine number was followed by changes in mean spine number during subsequent years and a standard quantitative genetic formula revealed that spine number has a heritable component. Our results provide evidence of rapid morphological responses to selection from predators and suggest that temporal variation in selection may help maintain variation within populations. Furthermore, our findings indicate that variable selection can be predicted if the agents of selection are known. [source] Habitat complexity modulates phenotype expression through developmental plasticity in the threespine sticklebackBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2010MÓNICA V. GARDUÑO-PAZ The expression of alternative phenotypes within a single species is often considered to be the result of ontogenetic processes and specifically phenotypic plasticity responses to exposure to different environmental conditions. In fish, which have been widely used to test such questions, exposure to different diets is the most frequently described initiator of plastic responses. The effect of physical characteristics of the habitat on fish morphology has not been fully explored. In the present study, a clear effect of habitat complexity on fish shape was found. Threespine sticklebacks were exposed to two different habitat treatments, simple and complex, over a 17-week period. The exposure to the habitats resulted in the expression of very significant differences in body and head morphologies and spine position, showing that the physical environment can modulate the expression of traits through phenotypic plasticity during ontogeny. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 407,413. [source] Assortative mating between adjacent populations of threespine stickleback (Gasterosteus aculeatus)ECOLOGY OF FRESHWATER FISH, Issue 1 2004R. J. Scott Abstract,,, The idea that sexual selection can lead to rapid evolution of premating isolation among independent populations (speciation) has been controversial, but is rapidly gaining acceptance among many evolutionary biologists as empirical examples accumulate. A survey of male signals and female preferences (mate recognition systems, MRSs) across the contact zone between divergent populations of threespine stickleback (Gasterosteus aculeatus) in Conner Creek, WA, revealed a spatial pattern of MRSs that is consistent with speciation via sexual selection. Females from locations that possessed melanic males preferred melanic males whereas females from populations possessing typical mosaic males (red chin, blue iris, and blue-green dorsum) preferred mosaic males. I argue that sensory drive sexual selection, acting through geographically varying spectral properties, is responsible for the observed population differences and premating isolation between the adjacent populations. [source] Feeding ecology and habitat of the threespine stickleback, Gasterosteus aculeatus microcephalus, in a remnant population of northwestern Baja California, MéxicoECOLOGY OF FRESHWATER FISH, Issue 4 2001S. Sánchez-Gonzáles Abstract , The feeding ecology and habitat of the threespine stickleback (Gasterosteus aculeatus microcephalus Girard, 1854) was studied from November 1996 to May 1997 in a remnant population of northwestern Baja California, México. The analysis of the stomach content of 179 individuals (25 to 56 mm standard length [SL]) showed a diet dominated by cyclopoid copepods (43.8%) and chironomid larvae (39.1%). Diet in relation to size and sex of the fish was dominated by copepods in autumn and winter and by chironomid larvae during spring. Diet overlap (Schoener's index) was significant (,60%) between fish size-classes in January, March and April and between sexes for most sampling months. The average size of prey consumed was independent of fish mouth size. The feeding strategy of the threespine stickleback shifted from opportunist in winter to specialist in spring., [source] Trying to See Red Through Stickleback Photoreceptors: Functional Substitution of Receptor SensitivitiesETHOLOGY, Issue 3 2006Mickey P. Rowe A key to understanding animal behavior is knowledge of the sensory information animals extract from their environment. For visually motivated tasks, the information animals obtain through their eyes is often assumed to be essentially the same as that perceived by humans. However, known differences in structure and processing among the visual systems of different animals clearly indicate that the world seen by each is different. A well-characterized difference between human and other animal visual systems is the number of types and spectral sensitivities of their photoreceptors. We are developing a technique, functional substitution, that exploits knowledge of these differences to portray for human subjects, colors as they would appear through the photoreceptors of another animal. In a specific application, we ask human subjects to rank hues of male threespine stickleback (Gasterosteus aculeatus) throats viewed through stickleback photopigments. We compare these ranks to ranks of the same throat hues viewed through normal human photoreceptors. We find essentially no difference between the two sets of rankings. This suggests that any differences in human and stickleback rankings of such hues would result from differences in post-receptoral neural processing. Using a previously developed model of stickleback neural processing, we established another ranking of the hues which was again essentially the same as the rankings produced by the human subjects. A growing literature indicates that stickleback do rank such hues in the evaluation of males as potential mates or threats. Although our results do not demonstrate that humans and stickleback use the same mechanisms to assess color, our experiments significantly failed to show that stickleback and human rankings of throat hues should be different. Nevertheless, a comparison of all these rankings to ranks derived from subjective color scoring by human observers suggests that color scoring may utilize other cues and should thus be used cautiously. [source] LOCAL HETEROZYGOSITY-FITNESS CORRELATIONS WITH GLOBAL POSITIVE EFFECTS ON FITNESS IN THREESPINE STICKLEBACKEVOLUTION, Issue 8 2006Mélissa Lieutenant-Gosselin Abstract The complex interactions between genetic diversity and evolution have important implications in many biological areas including conservation, speciation, and mate choice. A common way to study these interactions is to look at heterozygosity-fitness correlations (HFCs). Until recently, HFCs based on noncoding markers were believed to result primarily from global inbreeding effects. However, accumulating theoretical and empirical evidence shows that HFCs may often result from genes being linked to the markers used (local effect). Moreover, local effect HFCs could differ from global inbreeding effects in their direction and occurrence. Consequently, the investigation of the structure and consequences of local HFCs is emerging as a new important goal in evolutionary biology. In this study of a wild threespine stickleback (Gasterosteus aculeatus) population, we first tested the presence of significant positive or negative local effects of heterozygosity at 30 microsatellites loci on five fitness components: survival, mating success, territoriality, length, and body condition. Then, we evaluated the direction and shape of total impact of local HFCs, and estimated the magnitude of the impacts on fitness using regression coefficients and selection differentials. We found that multilocus heterozygosity was not a reliable estimator of individual inbreeding coefficient, which supported the relevance of single-locus based analyses. Highly significant and temporally stable local HFCs were observed. These were mainly positive, but negative effects of heterozygosity were also found. Strong and opposite effects of heterozygosity are probably present in many populations, but may be blurred in HFC analyses looking for global effects only. In this population, both negative and positive HFCs are apparently driving mate preference by females, which is likely to contribute to the maintenance of both additive and nonadditive genetic variance. [source] ASYMMETRY IN STRUCTURAL DEFENSES: INSIGHTS INTO SELECTIVE PREDATION IN THE WILDEVOLUTION, Issue 9 2003C. A. Bergstrom Abstract Assessment of geographical patterns in fluctuating asymmetry (small, random differences between sides of bilateral characters) among populations shows promise as a tool to resolve the relative biomechanical importance of traits, in addition to being a possible indicator of habitat quality. We used 115 endemic freshwater populations of threespine stickleback (Gasterosteus aculeatus) from Haida Gwaii (Queen Charlotte Islands), British Columbia, Canada, to explore the degree of concordance between geographical variation of asymmetry in a predator defense structure (bony lateral plates) and geographical variation in several indirect measures of predation regime as well as several abiotic habitat variables. We found a geographical cline in the population frequency of lateral plate asymmetries, with reduced asymmetry in the southern clear-water regions of the archipelago characterized by long reaction distances and greater chance of capture by predators, and elevated asymmetry in the northern stained-water regions with poor visibility and low chances of capture. Lateral plate asymmetry was strongly correlated with expression of several defensive armor traits, including total plate numbers among populations, mean cross-sectional diameter of stickleback with the dorsal and pelvic spines erect, and mean degree of overlap between the plates and spine supports. There were no significant correlations between frequency of asymmetric fish and any of our abiotic habitat variables. Stickleback with structural plate asymmetries had fewer trout-induced scars than symmetric fish in the significant majority of populations, and there was a decrease in structural plate asymmetry with age in stained-water habitats, suggesting that trout predators may be selectively removing asymmetric fish in some lakes. This study provides evidence that geographical variation in developmental stability of threespine stickleback, as seen in the frequencies of asymmetry, reflects differences among populations in the importance of structural defenses to fitness rather than differences in habitat quality, and that asymmetry may be a target of selection by predators in wild populations. [source] TEMPORAL VARIATION IN DIVERGENT SELECTION ON SPINE NUMBER IN THREESPINE STICKLEBACKEVOLUTION, Issue 12 2002T. E. Reimchen Abstract., Short-term temporal cycles in ecological pressures, such as shifts in predation regime, are widespread in nature yet estimates of temporal variation in the direction and intensity of natural selection are few. Previous work on threespine stickleback (Gasterosteus aculeatus) has revealed that dorsal and pelvic spines are a defense against gape-limited predators but may be detrimental against grappling insect predators. In this study, we examined a 15-year database from an endemic population of threespine stickleback to look for evidence of temporal shifts in exposure to these divergent predation regimes and correlated shifts in selection on spine number. For juveniles, we detected selection for increased spine number during winter when gape-limited avian piscivores were most common but selection for decreased spine number during summer when odonate predation was more common. For subadults and adults, which are taken primarily by avian piscivores, we predicted selection should generally be for increased spine number in all seasons. Among 59 comparisons, four selection differentials were significant (Bonferroni corrected) and in the predicted direction. However, there was also substantial variability in remaining differentials, including two examples with strong selection for spine reduction. These reversals were associated with increased tendency of the fish to shift to a benthic niche, as determined from examination of stomach contents. These dietary data suggest that increased encounter rates with odonate predation select for spine reduction. Strong selection on spine number was followed by changes in mean spine number during subsequent years and a standard quantitative genetic formula revealed that spine number has a heritable component. Our results provide evidence of rapid morphological responses to selection from predators and suggest that temporal variation in selection may help maintain variation within populations. Furthermore, our findings indicate that variable selection can be predicted if the agents of selection are known. [source] Lateral plate asymmetry, diet and parasitism in threespine sticklebackJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2001T. E. Reimchen Individuals with random left,right departures from bilateral symmetry are predicted to exhibit fitness reduction including increased parasitism. In an insular lake population of stickleback (Gasterosteus aculeatus) from the Queen Charlotte Islands, Western Canada, phenotypes with high or low number of lateral bony plates exhibited increased plate asymmetry relative to modal phenotypes. Asymmetric lateral plate phenotypes had increased prevalence and to a lesser extent intensity of parasitism relative to symmetric individuals, suggesting that differences in genetic resistance to pathogens contributed to unequal parasitism. The effect occurred mainly in the larger adults and during the warmest season, which may be due to the high metabolic costs incurred during the summer breeding season. Dietary differences between symmetric and asymmetric phenotypes were also detected and could contribute to unequal infection rates by mediating exposure to infected prey items. Our study, which is one of the first long-term field assessments of asymmetry and parasitism, yields results that are consistent with studies linking asymmetry to reduced fitness and indicate that lateral plate asymmetry can be an indicator of poor individual quality, despite its apparent directionality. [source] Evolutionary significance of fecundity reduction in threespine stickleback infected by the diphyllobothriidean cestode Schistocephalus solidusBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2010DAVID C. HEINS Parasites may cause fecundity reduction in their hosts via life-history strategies involving simple nutrient theft or manipulation of host energy allocation. Simple theft of nutrients incidentally reduces host energy allocation to reproduction, whereas manipulation is a parasite-driven diversion of energy away from host reproduction. We aimed to determine whether the diphyllobothriidean cestode parasite Schistocephalus solidus causes loss of fecundity in the threespine stickleback fish (Gasterosteus aculeatus) through simple nutrient theft or the manipulation of host energy allocation. In one stickleback population (Walby Lake, Matanuska-Susitna Valley, Alaska), there was no difference in the sizes and ages of infected and uninfected reproducing females. Lightly- and heavily-infected females produced clutches of eggs, but increasingly smaller percentages of infected females produced clutches as the parasite-to-host biomass ratio (PI) increased. Infected, clutch-bearing sticklebacks showed reductions in clutch size, egg mass, and clutch mass, which were related to increases in PI and reflected a reduction in reproductive parameters as growth in parasite mass occurs. The findings obtained for this population are consistent with the hypothesis of simple nutrient theft; however, populations of S. solidus in other regions may manipulate host energy allocation. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 835,846. [source] Habitat complexity modulates phenotype expression through developmental plasticity in the threespine sticklebackBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2010MÓNICA V. GARDUÑO-PAZ The expression of alternative phenotypes within a single species is often considered to be the result of ontogenetic processes and specifically phenotypic plasticity responses to exposure to different environmental conditions. In fish, which have been widely used to test such questions, exposure to different diets is the most frequently described initiator of plastic responses. The effect of physical characteristics of the habitat on fish morphology has not been fully explored. In the present study, a clear effect of habitat complexity on fish shape was found. Threespine sticklebacks were exposed to two different habitat treatments, simple and complex, over a 17-week period. The exposure to the habitats resulted in the expression of very significant differences in body and head morphologies and spine position, showing that the physical environment can modulate the expression of traits through phenotypic plasticity during ontogeny. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 407,413. [source] Microgeographical diversification of threespine stickleback: body shape,habitat correlations in a small, ecologically diverse Alaskan drainageBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009WINDSOR E. AGUIRRE Adaptive radiations are a major source of evolutionary diversity in nature, and understanding how they originate and how organisms diversify during the early stages of adaptive radiation is a major problem in evolutionary biology. The relationship between habitat type and body shape variation was investigated in a postglacial radiation of threespine stickleback in the upper Fish Creek drainage of Cook Inlet, Alaska. Although small, the upper Fish Creek drainage includes ecologically diverse lakes and streams in close proximity to one another that harbour abundant stickleback. Specimens from ancestral anadromous and derived resident freshwater populations differed substantially and could be distinguished by body shape alone, suggesting that the initial stages of adaptation contribute disproportionately to evolutionary divergence. Body shape divergence among resident freshwater populations was also considerable, and phenotypic distances among samples from freshwater populations were associated with habitat type but not geographical distance. As expected, stream stickleback from slow-moving, structurally complex environments tended to have the deepest bodies, stickleback from lakes with a mostly benthic habitat were similar but less extreme, and stickleback from lakes with a mostly limnetic habitat were the most shallow-bodied, elongate fish. Beyond adapting rapidly to conditions in freshwater environments, stickleback can diversify rapidly over small geographical scales in freshwater systems despite opportunities for gene flow. This study highlights the importance of ecological heterogeneity over small geographical scales for evolutionary diversification during the early stages of adaptive radiation, and lays the foundation for future research on this ecologically diverse, postglacial system. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 139,151. [source] Evolutionary diversification of opercle shape in Cook Inlet threespine sticklebackBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009SAAD ARIF We investigated the evolution of a large facial bone, the opercle (OP), in lake populations of the threespine stickleback that were founded by anadromous ancestors, in Cook Inlet, Alaska. Recent studies characterized OP variation among marine and lake populations and mapped a quantitative trait locus with a large influence on OP shape. Using populations from diverse environments and independent evolutionary histories, we examined divergence of OP shape from that of the anadromous ancestor. We report preliminary evidence for divergence between benthic and generalist lake ecotypes, necessitating further investigation. Furthermore, rapid divergence of OP shape has occurred in a lake population that was founded by anadromous stickleback in the 1980s, which is consistent with divergence of other phenotypic traits and with OP diversification in other lake populations. By contrast, there has been limited evolution of OP shape in a second lake population that may have experienced a genetic bottleneck early in its history and lacks genetic variation for OP divergence. Taken together, the results obtained from these two populations are consistent with studies of other stickleback phenotypic traits that implicate ancestral variation in postglacial adaptive radiation of threespine stickleback in fresh water. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 832,844. [source] Ecological selection against hybrids in natural populations of sympatric threespine sticklebacksJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2007J. L. GOW Abstract Experimental work has provided evidence for extrinsic post-zygotic isolation, a phenomenon unique to ecological speciation. The role that ecological components to reduced hybrid fitness play in promoting speciation and maintaining species integrity in the wild, however, is not as well understood. We addressed this problem by testing for selection against naturally occurring hybrids in two sympatric species pairs of benthic and limnetic threespine sticklebacks (Gasterosteus aculeatus). If post-zygotic isolation is a significant reproductive barrier, the relative frequency of hybrids within a population should decline significantly across the life-cycle. Such a trend in a natural population would give independent support to experimental evidence for extrinsic, rather than intrinsic, post-zygotic isolation in this system. Indeed, tracing mean individual hybridity (genetic intermediateness) across three life-history stages spanning four generations revealed just such a decline. This provides compelling evidence that extrinsic selection plays an important role in maintaining species divergence and supports a role for ecological speciation in sticklebacks. [source] Effects of genetics and light environment on colour expression in threespine sticklebacksBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2008EVA LEWANDOWSKI The genetic basis of traits that are under sexual selection and that are involved in recognizing conspecific mates is poorly known, even in systems in which the phenotypic basis of these traits has been well studied. In the present study, we investigate genetic and environmental influences on nuptial colour, which plays important roles in sexual selection and sexual isolation in species pairs of limnetic and benthic threespine sticklebacks (Gasterosteus aculeatus species complex). Previous work demonstrated that colour differences among species correlate to differences in the ambient light prevalent in their mating habitat. Red fish are found in clear water and black fish in red-shifted habitats. We used a paternal half-sib split-clutch design to investigate the genetic and environmental basis of nuptial colour. We found genetic differences between a red and a black stickleback population in the expression of both red and black nuptial colour. In addition, the light environment influenced colour expression, and genotype by environment interactions were also present. We found evidence for both phenotypic and genetic correlations between our colour traits; some of these correlations are in opposite directions for our red and black populations. These results suggest that both genetic change and phenotypic plasticity underlie the correlation of male colour with light environment. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94, 663,673. [source] |