Home About us Contact | |||
Three-membered Ring (three-membered + ring)
Selected AbstractsSynthesis of (Vinylidene)- and (Cyclopropenyl)ruthenium Complexes Containing a Tris(pyrazolyl)borato (Tp) LigandEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 23 2004Yih-Hsing Lo Abstract A convenient high-yield route to [Ru(C,C,Ph)(Tp)(PPh3)2] [2; Tp = HB(pz)3, pz = pyrazolyl] has been found through the intermediacy of [RuCl2(Hpz)2(PPh3)2] (1). This complex is readily obtained on treatment of [RuCl2(PPh3)3] with 2 equiv. of pyrazole in boiling THF. The molecular structures of complexes 1 and 2 have been confirmed by single-crystal X-ray diffraction analysis. A number of new cationic vinylidene complexes [Ru{=C=C(Ph)CH2R}(Tp)(PPh3)2]+ [3a, R = CN; 3b, R = HC=CH2; 3c, R = CH=C(CH3)2; 3d, R = Ph; 3e, R = C(O)OMe] have been prepared by electrophilic addition of organic halides to complex 2. The deprotonation reaction of 3a yields the cyclopropenyl complex 4a. One phosphane ligand of 4a is remarkably labile, being replaced by donor ligands L to yield diastereomeric mixtures of the cyclopropenyl complexes 5a,5d mostly in an approximate 4:1 ratio. The cyclopropenyl rings in 4a and 5a are susceptible to ring opening by I2. In addition, treatment of 4a with nBuNC in the presence of MeOH results in substitution of a phosphane ligand by nBuNC followed by protonation of the three-membered ring by MeOH. This is then followed by addition of methoxide to give the vinyl ether complex [Ru{C(OMe)=C(Ph)CH2CN}(Tp)(PPh3)(nBuNC)] (8a). (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] Blocking Fluorine Substitution in Biotransformation of Nortricyclanyl N -Phenylcarbamates with Beauveria bassianaEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 11 2003Günter Haufe Abstract The biotransformation of tricyclo[2.2.1.02,6]hept-3-yl N -phenylcarbamate (8) by a standard procedure using Beauveria bassiana gave a 7:1 mixture of optically active exo,exo - and exo,endo -5-hydroxytricyclo[2.2.1.02,6]hept-3-yl N -phenylcarbamates 15 and 16 in 19% isolated yield. No ring opening of the three-membered ring was observed. Substitution with a fluorine atom at the 5- endo - or 5- exo -position prevented hydroxylation of any alicyclic position of the molecules, p -hydroxylation of the aromatic ring occurring to a small extent instead. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source] Anionic ring-opening polymerization of small phosphorus heterocycles and their borane adducts: An ab initio investigationHETEROATOM CHEMISTRY, Issue 2 2007Michelle L. Coote The kinetics and thermodynamics of anionic ring-opening reactions of phosphiranes, phosphetanes, and phospholanes and their borane adducts have been studied by high-level ab initio procedures. For the free heterocycles, model propagation reactions involving nucleophilic attack by Me2P, at the ring ,-carbon were found to be feasible for the three- and four-membered rings, but not for the five-membered ring. For the borane adducts, nucleophilic attack by Me2(BH3)P, was only facile for the three-membered ring, despite an increased thermodynamic tendency toward ring opening for the borane adducts of both the three- and four-membered rings. The formation constants of the borane adducts of methylphosphirane and methylphosphetane were K = 2.6 × 1013 L mol,1 and K = 1.2 × 1020 L mol,1, respectively. A Marcus analysis of the ring-opening reactions of methylphosphirane, methylphosphetane, and their borane adducts showed that the release of ring strain and an "additional factor" contribute to rate enhancement compared with their strain-free analogues. The additional factor was larger for the three-membered rings than for the four-membered rings and was larger in the free heterocycles than in their borane adducts. The additional factor is complex in origin and appears to reflect an increase in the separation between the bonding and antibonding orbitals of the breaking bond on going from the three-membered rings to the four-membered rings, and on going from the free heterocycles to the borane adducts. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:118,128, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20323 [source] |