Home About us Contact | |||
Third Postnatal Week (third + postnatal_week)
Selected AbstractsPostnatal maturation of GABAA and GABAC receptor function in the mammalian superior colliculusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2001Mathias Boller Abstract In the stratum griseum superficiale (SGS) of the mammalian superior colliculus, GABAC receptors seem to control the excitability of projection neurons by selective inactivation of local GABAergic interneurons. As the onset of visual responses to SC begins well after birth in the rat, it is possible to study developmental changes in GABAergic mechanisms that are linked to the onset of visual information processing. In order to analyse postnatal changes in inhibitory mechanisms that involve GABA receptor function, we used extracellular field potential (FP) recordings and single cell patch-clamp techniques in slices from postnatal day 4 (P4) to P32 and examined the effects of GABA and muscimol on electrically evoked SGS cell activity. While GABAA receptor activation affected FP amplitudes throughout postnatal development, GABAC receptor activation did not significantly change FP amplitudes until the third postnatal week. Results from patch-clamping single cells, however, clearly demonstrate that GABAC receptors are already functional at P4 , similar to GABAA receptors. Throughout postnatal development, activation of GABAC receptors leads to a strong inhibition of inhibitory postsynaptic activity, indicating that GABAC receptors are expressed by inhibitory interneurons. Furthermore, the proportion of neurons that show decreased excitatory postsynaptic activity during GABAC receptor activation correlates with the proportion of GABAergic interneurons in SGS. Our patch-clamp results indicate that the functional expression of GABAC receptors by GABAergic interneurons does not change significantly during postnatal development. However, our measurements of FP amplitudes indicate that the maturation of the efferent connections of these GABAergic neurons within SGS during the third postnatal week strongly changes GABAC receptor function. [source] Reader variability in the use of diagnostic terms to describe white matter lesions seen on cranial scans of severely premature infants: The ELGAN studyJOURNAL OF CLINICAL ULTRASOUND, Issue 8 2010Sjirk Westra MD Abstract Purpose To evaluate reader variability of white matter lesions seen on cranial sonographic scans of extreme low gestational age neonates (ELGANs). Methods In 1,452 ELGANs, cranial sonographic scans were obtained in the first and second postnatal weeks, and between the third postnatal week and term. All sets of scans were read independently by two sonologists. We reviewed the use of four diagnostic labels: early periventricular leucomalacia, cystic periventricular leucomalacia, periventricular hemorrhagic infarction (PVHI), and other white matter diagnosis, by 16 sonologists at 14 institutions. We evaluated the association of these labels with location and laterality of hyperechoic and hypoechoic lesions, location of intraventricular hemorrhage, and characteristics of ventricular enlargement. Results Experienced sonologists differed substantially in their application of the diagnostic labels. Three readers applied early periventricular leucomalacia to more than one fourth of all the scans they read, whereas eight applied this label to ,5% of scans. Five applied PVHI to ,10% of scans, while three applied this label to ,5% of scans. More than one third of scans labeled cystic periventricular leucomalacia had unilateral hypoechoic lesions. White matter abnormalities in PVHI were more extensive than in periventricular leucomalacia and were more anteriorly located. Hypoechoic lesions on late scans tended to be in the same locations, regardless of the diagnostic label applied. Conclusions Experienced sonologists differ considerably in their tendency to apply diagnostic labels for white matter lesions. This is due to lack of universally agreed-upon definitions. We recommend reducing this variability to improve the validity of large multicenter studies. © 2010 Wiley Periodicals, Inc. J Clin Ultrasound 38:409,419, 2010 [source] A2-Pancortins (Pancortin-3 and -4) Are the Dominant Pancortins During Neocortical DevelopmentJOURNAL OF NEUROCHEMISTRY, Issue 1 2000Takashi Nagano We have identified a novel mouse gene named pancortin that is expressed dominantly in the mature cerebral cortex. This gene produces four different species of proteins, Pancortin-1-4, sharing a common region in the middle of their structure with two variations at the N-terminal (A1 or A2 part) and C-terminal (C1 or C2 part) sides, respectively. In the present study, we showed that expression of mRNAs for A2-Pancortins (Pancortin species that contain the A2 part, i.e., Pancortin-3 and -4) is more dominant than that of mRNAs for A1-Pancortins (Pancortin species that contain the A1 part, i.e., Pancortin-1 and -2) in the prenatal mouse cerebral neocortex. Using western blot analysis, we found that substantial amounts of both A2-Pancortins were present in the prenatal cerebral neocortex and P19 cells after inducing neuronal differentiation. A2-Pancortins were still present in the cerebral neocortex of the adult, although their mRNAs were hardly detected. In contrast, the amount of A1-Pancortins did not increase after the third postnatal week in spite of their intense gene expression. Furthermore, we showed that recombinant Pancortin-3, one of the A2-Pancortins, was a secreted protein, in contrast to Pancortin-1 (one of the A1-Pancortins). These results suggest that A2-Pancortins are extracellular proteins essential for neuronal differentiation and that their molecular behavior is distinct from that of A1-Pancortins. [source] Expression of active caspase-3 in mitotic and postmitotic cells of the rat forebrainTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2001Xiao-Xin Yan Abstract Active caspase-3 immunoreactivity was detected in the rat forebrain proliferative regions at birth and remained high in these areas for about 2 weeks, during which period labeled cells were present centroperipherally across the olfactory bulb. By the end of the third postnatal week, only a small number of immunolabeled cells remained in these forebrain structures. Active caspase-3 immunolabeling was localized mostly to cell nuclei and co-localized partially with TuJ1 and NeuN immunoreactivity, but not with glial fibrially acidic protein, OX-42, ,-aminobutyric acid, or terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL)-positive labeling. Active caspase-3 and 5-bromo-2,-deoxyuridine (BrdU) double-labeled nuclei were seen in the proliferative regions after 2 hours and in the periglomerular region of the bulb after 7 days following BrdU injections. Examination of the cells with electron microscopy confirmed that the active caspase-3-containing nuclei in the proliferative regions often had infoldings and appeared to be undergoing division. Some of the cells with active caspase-3-labeled nuclei in the bulb had synapses on their somata or dendrites. Labeled dendritic spines and a few axon terminals were also observed in the olfactory bulb. Taken together, it appears that a wave of active caspase-3-positive cells are dividing in the proliferative zones and then migrating to the bulb as they differentiate into neurons. Therefore, active caspase-3 may play a role in cellular processes such as neuronal differentiation, migration, and plasticity, in addition to its role in cell death. J. Comp. Neurol. 433:4,22, 2001. © 2001 Wiley-Liss, Inc. [source] Brevican in the developing hippocampal fimbria: Differential expression in myelinating oligodendrocytes and adult astrocytes suggests a dual role for brevican in central nervous system fiber tract developmentTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2001Tokiko Ogawa Abstract Brevican is one of the most abundant extracellular matrix proteoglycans in the mammalian brain. We have previously shown that brevican produced by gray matter astrocytes constitutes a major component of perineuronal extracellular matrix in the adult brain. In this paper, we investigate the expression of brevican in the postnatal hippocampal fimbria to explore the role of the proteoglycan in central nervous system fiber tract development. We demonstrate that brevican is expressed by both oligodendrocytes and white matter astrocytes in the fimbria, but the expression of brevican in these two glial cell types is differently regulated during development. At P14, brevican immunoreactivity was observed throughout the fimbria, with particularly strong immunoreactivity in the developing interfascicular glial rows. In situ hybridization showed that oligodendrocytes in the glial rows strongly express brevican during the second and third postnatal weeks. Expression in oligodendrocytes was then down-regulated after P21. In the adult fimbria, no brevican expression was observed in oligodendrocytes. The time window of brevican expression coincides with the phase in which immature oligodendrocytes actively extend membrane processes and enwrap axon fibers. In contrast, the expression in astrocytes started around P21 as oligodendrocytes began to down-regulate the expression. In the adult fimbria, brevican expression was restricted to astrocytes. In situ hybridization with isoform-specific probes and RNase protection assays showed that the authentic, secreted form of brevican, not the glycosylphosphatidylinositol-anchored variant, is the predominant species expressed in the developing fimbria. Our results suggest that brevican plays a dual role in developing and adult fiber tracts. J. Comp. Neurol. 432:285,295, 2001. © 2001 Wiley-Liss, Inc. [source] |