Third Domain (third + domain)

Distribution by Scientific Domains


Selected Abstracts


Solution structure of the bb, domains of human protein disulfide isomerase

FEBS JOURNAL, Issue 5 2009
Alexey Y. Denisov
Protein disulfide isomerase is the most abundant and best studied of the disulfide isomerases that catalyze disulfide bond formation in the endoplasmic reticulum, yet the specifics of how it binds substrate have been elusive. Protein disulfide isomerase is composed of four thioredoxin-like domains (abb,a,). Cross-linking studies with radiolabeled peptides and unfolded proteins have shown that it binds incompletely folded proteins primarily via its third domain, b,. Here, we determined the solution structure of the second and third domains of human protein disulfide isomerase (b and b,, respectively) by triple-resonance NMR spectroscopy and molecular modeling. NMR titrations identified a large hydrophobic surface within the b, domain that binds unfolded ribonuclease A and the peptides mastoparan and somatostatin. Protein disulfide isomerase-catalyzed refolding of reduced ribonuclease A in vitro was inhibited by these peptides at concentrations equal to their affinity to the bb, fragment. Our findings provide a structural basis for previous kinetic and cross-linking studies which have shown that protein disulfide isomerase exhibits a saturable, substrate-binding site. [source]


Intraprotein electrostatics derived from first principles: Divide-and-conquer approaches for QM/MM calculations

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 16 2003
Pablo A. Molina
Two divide-and-conquer (DAQ) approaches for building multipole-based molecular electrostatic potentials of proteins are presented and evaluated for use in QM/MM calculations. One approach is a further development of the neutralization method of Bellido and Rullmann (J Comput Chem 1989, 10, 479,487) while the other is based on removing part of the electron density before performing the multipole expansion. Both methods create systems with integer charges without using charge renormalization. To determine their performance in terms of location of cuts and distance to QM region, the new DAQ approaches are tested in calculations of the proton affinity of N, of Lys55 in the inhibitor turkey ovomucoid third domain. Finally, the two methods are used to build a variety of MM regions, applied to calculations of the pKa of Lys55, and compared to other computational methodologies in which force field charges are employed. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1971,1979, 2003 [source]


The impact of childhood cancer on the family: a qualitative analysis of strains, resources, and coping behaviors

PSYCHO-ONCOLOGY, Issue 6 2004
Joän M. Patterson
Clinical research has led to tremendous improvements in treatment efficacy for most childhood cancers; overall 5-year survival is now greater than 75%. Long-term consequences of cure (i.e. adverse medical and psychosocial effects) have only recently begun to emerge as a primary focus of clinical research, including studies of health-related quality of life among survivors. Usually lacking in such efforts, however, is consideration of the impact of the cancer experience on the family, and the influence that the family's response to cancer has on quality of life in the child. From this qualitative analysis of seven focus groups with 45 parents of children a year or more out of cancer treatment, we report those aspects of a child's cancer diagnosis, treatment, and recovery that parents perceived as particularly difficult for their family, and the resources and coping behaviors parents perceived as helpful to their family in dealing with and managing the cancer experience. Using the Family Adjustment and Adaptation Response theoretical model to organize the data, the domains of strains and resources were delineated into themes and sub-themes related to the cancer, child, family, health-care system, and community. Within a third domain, coping, sub-themes were identified within the themes of appraisal-focused, problem-focused, and emotion-focused coping behaviors. Integration of this information should serve to improve future studies of health-related quality of life among children who survive cancer. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Crystallization and preliminary X-ray analysis of the complex of porcine pancreatic elastase and a hybrid squash inhibitor

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 4 2002
Kai Hilpert
A hybrid inhibitor consisting of the scaffold of a squash-type inhibitor and a specific inhibitory peptide optimized from the third domain of ovomucoid inhibitor from turkey against porcine pancreatic elastase was synthesized by peptide synthesis. The complex formed by this hybrid inhibitor and the porcine pancreatic elastase was crystallized using the hanging-drop method with citrate in the crystallization solution. The space group was determined to be P212121, with unit-cell parameters a = 56.33, b = 56.44, c = 72.76,Å. A complete X-ray diffraction data set was collected under cryogenic conditions to 1.8,Å. [source]


Structures of three diphtheria toxin repressor (DtxR) variants with decreased repressor activity

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 5 2001
Ehmke Pohl
The diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae regulates the expression of the gene on corynebacteriophages that encodes diphtheria toxin (DT). Other genes regulated by DtxR include those that encode proteins involved in siderophore-mediated iron uptake. DtxR requires activation by divalent metals and holo-DtxR is a dimeric regulator with two distinct metal-binding sites per three-domain monomer. At site 1, three side chains and a sulfate or phosphate anion are involved in metal coordination. In the DtxR,DNA complex this anion is replaced by the side chain of Glu170 provided by the third domain of the repressor. At site 2 the metal ion is coordinated exclusively by constituents of the polypeptide chain. In this paper, five crystal structures of three DtxR variants focusing on residues Glu20, Arg80 and Cys102 are reported. The resolution of these structures ranges from 2.3 to 2.8,Å. The side chain of Glu20 provided by the DNA-binding domain forms a salt bridge to Arg80, which in turn interacts with the anion. Replacing either of the salt-bridge partners with an alanine reduces repressor activity substantially and it has been inferred that the salt bridge could possibly control the wedge angle between the DNA-binding domain and the dimerization domain, thereby modulating repressor activity. Cys102 is a key residue of metal site 2 and its substitution into a serine abolishes repressor activity. The crystal structures of Zn-Glu20Ala-DtxR, Zn-Arg80Ala-DtxR, Cd-Cys102Ser-DtxR and apo-Cys102Ser-DtxR in two related space groups reveal that none of these substitutions leads to dramatic rearrangements of the DtxR fold. However, the five crystal structures presented here show significant local changes and a considerable degree of flexibility of the DNA-binding domain with respect to the dimerization domain. Furthermore, all five structures deviate significantly from the structure in the DtxR,DNA complex with respect to overall domain orientation. These results confirm the importance of the hinge motion for repressor activity. Since the third domain has often been invisible in previous crystal structures of DtxR, it is also noteworthy that the SH3-like domain could be traced in four of the five crystal structures. [source]


Solution structure of the bb, domains of human protein disulfide isomerase

FEBS JOURNAL, Issue 5 2009
Alexey Y. Denisov
Protein disulfide isomerase is the most abundant and best studied of the disulfide isomerases that catalyze disulfide bond formation in the endoplasmic reticulum, yet the specifics of how it binds substrate have been elusive. Protein disulfide isomerase is composed of four thioredoxin-like domains (abb,a,). Cross-linking studies with radiolabeled peptides and unfolded proteins have shown that it binds incompletely folded proteins primarily via its third domain, b,. Here, we determined the solution structure of the second and third domains of human protein disulfide isomerase (b and b,, respectively) by triple-resonance NMR spectroscopy and molecular modeling. NMR titrations identified a large hydrophobic surface within the b, domain that binds unfolded ribonuclease A and the peptides mastoparan and somatostatin. Protein disulfide isomerase-catalyzed refolding of reduced ribonuclease A in vitro was inhibited by these peptides at concentrations equal to their affinity to the bb, fragment. Our findings provide a structural basis for previous kinetic and cross-linking studies which have shown that protein disulfide isomerase exhibits a saturable, substrate-binding site. [source]


Characterization of a comparative model of the extracellular domain of the epidermal growth factor receptor

PROTEIN SCIENCE, Issue 2 2000
Robert N. Jorissen
Abstract The Epidermal Growth Factor (EGF) receptor is a tyrosine kinase that mediates the biological effects of ligands such as EGF and transforming growth factor alpha. An understanding of the molecular basis of its action has been hindered by a lack of structural and mutational data on the receptor. We have constructed comparative models of the four extracellular domains of the EGF receptor that are based on the structure of the first three domains of the insulin-like growth factor-1 (IGF-1) receptor. The first and third domains of the EGF receptor, L1 and L2, are right-handed beta helices. The second and fourth domains of the EGF receptor, S1 and S2, consist of the modules held together by disulfide bonds, which, except for the first module of the S1 domain, form rod-like structures. The arrangement of the L1 and S1 domains of the model are similar to that of the first two domains of the IGF-1 receptor, whereas that of the L2 and S2 domains appear to be significantly different. Using the EGF receptor model and limited information from the literature, we have proposed a number of regions that may be involved in the functioning of the receptor. In particular, the faces containing the large beta sheets in the L1 and L2 domains have been suggested to be involved with ligand binding of EGF to its receptor. [source]