Basin Modelling (basin + modelling)

Distribution by Scientific Domains


Selected Abstracts


PETROLEUM MIGRATION, FAULTS AND OVERPRESSURE, PART I: CALIBRATING BASIN MODELLING USING PETROLEUM IN TRAPS , A REVIEW

JOURNAL OF PETROLEUM GEOLOGY, Issue 3 2006
D.A. Karlsen
This paper considers the principles of deciphering basin-scale hydrocarbon migration patterns using the geochemical information which is present in trapped petroleum. Petroleum accumulations in subsiding basins can be thought of as "data archives" within which stored information can help us to understand aspects of hydrocarbon formation and migration. This information can impart a time-resolved picture of hydrocarbon migration in a basin in response to processes associated with progressive burial, particularly in the context of the occurrence and periodic activity of faults. This review, which includes a series of tentative models of migration-related processes in the extensional Halten Terrace area, offshore mid-Norway, illustrates how we can use information from the migrating mobile hydrocarbon phase to improve our knowledge of the static geological system. Of particular importance is the role of sub-seismic heterogeneities and faults in controlling migration processes. We focus on how the secondary migration process can be enhanced in a multi-source rock basin such as the Halten Terrace, thereby increasing prospectivity. [source]


HYDROCARBON SEEPAGE AND CARBONATE MOUND FORMATION: A BASIN MODELLING STUDY FROM THE PORCUPINE BASIN (OFFSHORE IRELAND)

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2005
J. Naeth
This study assesses whether the growth of deep water carbonate mounds on the continental slope of the north Atlantic may be associated with active hydrocarbon leakage. The carbonate mounds studied occur in two distinct areas of the Porcupine Basin, 200 km offshore Ireland, known as the Hovland-Magellan and the Belgica areas. To evaluate the possible link between hydrocarbon leakage and mound growth, we used two dimensional cross-section and map-based basin modelling. Geological information was derived from interpretation of five seismic lines across the province as well as the Connemara oilfield. Calibration data was available from the northern part of the study area and included vitrinite reflectance, temperature and apatite fission track data. Modelling results indicate that the main Jurassic source rocks are mature to overmature for hydrocarbon generation throughout the basin. Hydrocarbon generation and migration started in the Late Cretaceous. Based on our stratigraphic and lithologic model definitions, hydrocarbon migration is modelled to be mainly vertical, with only Aptian and Tertiary deltaic strata directing hydrocarbon flow laterally out of the basin. Gas chimneys observed in the Connemara field were reproduced using flow modelling and are related to leakage at the apices of rotated Jurassic fault blocks. The model predicts significant focussing of gas migration towards the Belgica mounds, where Cretaceous and Tertiary carrier layers pinch out. In the Hovland-Magellan area, no obvious focus of hydrocarbon flow was modelled from the 2D section, but drainage area analysis of Tertiary maps indicates a link between mound position and shallow Tertiary closures which may focus hydrocarbon flow towards the mounds. [source]


DISTRIBUTION OF SOURCE ROCKS AND MATURITY MODELLING IN THE NORTHERN CENOZOIC SONG HONG BASIN (GULF OF TONKIN), VIETNAM

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2005
C. Andersen
The northern offshore part of the Cenozoic Song Hong Basin in the Gulf of Tonkin (East Vietnam Sea) is at an early stage of exploration with only a few wells drilled. Oil to source rock correlation indicates that coals are responsible for the sub-commercial oil and gas accumulations in sandstones in two of the four wells which have been drilled on faulted anticlines and flower structures. The wells are located in a narrow, structurally inverted zone with a thick predominantly deltaic Miocene succession between the Song Chay and Vinh Ninh/Song Lo fault zones. These faults are splays belonging to the offshore extension of the Red River Fault Zone. Access to a database of 3,500 km of 2D seismic data has allowed a detailed and consistent break-down of the geological record of the northern part of the basin into chronostratigraphic events which were used as inputs to model the hydrocarbon generation history. In addition, seismic facies mapping, using the internal reflection characteristics of selected seismic sequences, has been applied to predict the lateral distribution of source rock intervals. The results based on Yükler ID basin modelling are presented as profiles and maturity maps. The robustness of the results are analysed by testing different heat flow scenarios and by transfer of the model concept to IES Petromod software to obtain a more acceptable temperature history reconstruction using the Easy%R0 algorithm. Miocene coals in the wells located in the inverted zone between the fault splays are present in separate intervals. Seismic facies analysis suggests that the upper interval is of limited areal extent. The lower interval, of more widespread occurrence, is presently in the oil and condensate generating zones in deep synclines between inversion ridges. The Yükler modelling indicates, however, that the coaly source rock interval entered the main window prior to formation of traps as a result of Late Miocene inversion. Lacustrine mudstones, similar to the highly oil-prone Oligocene mudstones and coals which are exposed in the Dong Ho area at the northern margin of the Song Hong Basin and on Bach Long Vi Island in Gulf of Tonkin, are interpreted to be preserved in a system of undrilled NW,SE Paleogene half-grabens NE of the Song Lo Fault Zone. This is based on the presence of intervals with distinct, continuous, high reflection seismic amplitudes. Considerable overlap exists between the shale-prone seismic facies and the modelled extent of the present-day oil and condensate generating zones, suggesting that active source kitchens also exist in this part of the basin. Recently reported oil in a well located onshore (BIO-STB-IX) at the margin of the basin, which is sourced mainly from "Dong Ho type" lacustrine mudstones supports the presence of an additional Paleogene sourced petroleum system. [source]


Mudstone compaction curves in basin modelling: a study of Mesozoic and Cenozoic Sediments in the northern North Sea

BASIN RESEARCH, Issue 3 2010
Ĝ. Marcussen
ABSTRACT Basin modelling studies are carried out in order to understand the basin evolution and palaeotemperature history of sedimentary basins. The results of basin modelling are sensitive to changes in the physical properties of the rocks in the sedimentary sequences. The rate of basin subsidence depends, to a large extent, on the density of the sedimentary column, which is largely dependent on the porosity and therefore on the rate of compaction. This study has tested the sensitivity of varying porosity/depth curves and related thermal conductivities for the Cenozoic succession along a cross-section in the northern North Sea basin, offshore Norway. End-member porosity/depth curves, assuming clay with smectite and kaolinite properties, are compared with a standard compaction curve for shale normally applied to the North Sea. Using these alternate relationships, basin geometries of the Cenozoic succession may vary up to 15% from those predicted using the standard compaction curve. Isostatic subsidence along the cross-section varies 2.3,4.6% between the two end-member cases. This leads to a 3,8% difference in tectonic subsidence, with maximum values in the basin centre. Owing to this, the estimated stretching factors vary up to 7.8%, which further gives rise to a maximum difference in heat flow of more than 8.5% in the basin centre. The modelled temperatures for an Upper Jurassic source rock show a deviation of more than 20 °C at present dependent on the thermal conductivity properties in the post-rift succession. This will influence the modelled hydrocarbon generation history of the basin, which is an essential output from basin modelling analysis. Results from the northern North Sea have shown that varying compaction trends in sediments with varying thermal properties are important parameters to constrain when analysing sedimentary basins. [source]