Basic State (basic + state)

Distribution by Scientific Domains


Selected Abstracts


A conceptual model for understanding rainfall variability in the West African Sahel on interannual and interdecadal timescales

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 14 2001
S.E. Nicholson
Abstract This article describes and validates a new conceptual model for understanding Sahel rainfall variability. This conceptual model provides a framework that can readily incorporate and synthesize the roles played by the oceans, the African landmass and local meteorological factors. The most important ,local' factors are the location of the African Easterly Jet (AEJ) and the associated shears. The position of the AEJ helps to distinguish between a ,wet mode' and a ,dry mode' in the Sahel, while other factors determine which of two spatial patterns prevail during years of the dry regime. We test the paradigm by contrasting selected circulation parameters for the years 1958,1967 (representing the wet mode) and 1968,1997 (representing the dry mode). In doing so, we have identified several changes in the general atmospheric circulation that have accompanied the shift to drier conditions. The AEJ is further southward and more intense, the Inter-tropical Convergence Zone (ITCZ) is further south, the Tropical Easterly Jet (TEJ) is weaker, the equatorial westerlies are shallower and weaker, the southwesterly monsoon flow is weaker, and the relative humidity is lower (but not consistently so). The results of this study suggest that the key factor controlling the occurrence of the ,wet Sahel' mode versus the ,dry' mode is the presence of deep, well-developed equatorial westerlies. These displace the AEJ northward into Sahelian latitudes and increase the shear instabilities. The westerlies appear to be at least partially responsible for the well-known association between a weaker AEJ and wetter conditions in the Sahel, because the thermal wind induced by the Sahara/Atlantic temperature gradient is imposed upon a westerly basic state. Since one of the strongest contrasts between the ,wet Sahel' and ,dry Sahel' modes is the strength of the TEJ, the TEJ probably also plays a pivotal role in rainfall variability. In the dry mode, the equatorial westerlies are poorly developed and the core of the AEJ lies well to the south of the Sahel. The dry mode consists of two basic spatial patterns, depending on whether the Guinea Coast Region is anomalously wet or dry (the well-known dipole and no-dipole patterns, respectively). Which occurs is determined by other factors acting to reduce the intensity of the rainbelt. One of the relevant factors appears to be sea-surface temperatures (SSTs) in the Gulf of Guinea. Copyright © 2001 Royal Meteorological Society [source]


Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: Variability of transient eddy propagation in the Pacific,North America sector,

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 647 2010
R. Seager
Abstract El Niño,Southern Oscillation (ENSO) related precipitation anomalies in North America are related to changes in the paths of storm systems across the Pacific Ocean, with a more southern route into southwestern North America during El Niños and a more northern route into the Pacific Northwest during La Niñas. Daily reanalysis data are analyzed to confirm these changes. Seasonal mean upper tropospheric eddy statistics show, for El Niños (La Niñas), a pattern that is shifted southward (northward) compared with climatology. Paths of coherent phase propagation of transient eddies and of the propagation of wave packets are analyzed. A coherent path of propagation across the Pacific towards North America is identified that is more zonal during El Niño winters and, during La Niñas, has a dominant path heading northeastward to the Pacific Northwest. A second path heading southeastward from the central Pacific to the tropical east Pacific is more accentuated during La Niñas than El Niños. These changes in wave propagation are reproduced in an ensemble of seasonal integrations of a general circulation model forced by a tropical Pacific sea-surface temperature pattern, confirming that the changes are forced by changes in the mean atmospheric state arising from changes in tropical sea-surface temperature. A simplified model with a specified basic state is used to model the storm tracks for El Niño and La Niña winters. The results suggest that the changes in transient eddy propagation and the eddy statistics can be understood in terms of the refraction of transient eddies within different basic states. Copyright © 2010 Royal Meteorological Society [source]


Synoptic scale wave breaking and its potential to drive NAO-like circulation dipoles: A simplified GCM approach

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 638 2009
Torben Kunz
Abstract Recent studies suggest a synoptic view of the North Atlantic oscillation (NAO) with its positive (negative) phase being the remnant of anticyclonic (cyclonic) synoptic scale wave breaking. This study examines the potential of anticyclonic (AB) and cyclonic wave breaking (CB) to drive NAO-like meridional circulation dipoles by investigating the synoptic evolution of AB and CB events in a mid-latitude eddy-driven jet in a simplified GCM with zonally uniform basic state. First, a method for the detection of such events from daily isentropic maps of potential vorticity and horizontal deformation is constructed. Then, from the obtained sample of events AB- and CB-composites of the upper and lower tropospheric flow are computed, and a distinct spatial and temporal asymmetry in the response to AB and CB events is found. While from the interaction of two AB events (with a mean lifetime of 2.6 days) a strong and short-lived positive phase NAO-like dipole is produced at the surface but not at upper levels, single CB events (4.3 days) are found to drive a strong and more persistent negative phase NAO-like dipole at upper levels but not at the surface. It is concluded that AB (CB) is not capable of driving a positive (negative) phase NAO-like dipole individually. However, the results suggest that equivalent barotropic NAO-like variability may arise from the successive occurrence of AB and CB events. Further, a sensitivity to the strength of the stratospheric polar vortex is found with more (less) frequent AB (CB) events under strong vortex conditions. Copyright © 2009 Royal Meteorological Society [source]


A linear-stability analysis of the semi-implicit semi-Lagrangian discretization of the fully-compressible equations

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 632 2008
T. J. Payne
Abstract We give a linear-stability analysis of the two-time-level semi-implicit discretization of the adiabatic fully-compressible equations on an f -plane. Previous work has shown that the scheme is stable with respect to perturbations to a hydrostatic and isothermal basic state if the same time-implicit weight is used throughout and is greater than ½. In this note, we generalize this result to the case where different time weights are used for different terms. © Crown Copyright 2008. Reproduced with the permission of the Controller of HMSO and the Queen's Printer for Scotland. Published by John Wiley & Sons, Ltd. [source]


The role of the basic state in the ENSO,monsoon relationship and implications for predictability

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 607 2005
A. G. Turner
Abstract The impact of systematic model errors on a coupled simulation of the Asian summer monsoon and its interannual variability is studied. Although the mean monsoon climate is reasonably well captured, systematic errors in the equatorial Pacific mean that the monsoon,ENSO teleconnection is rather poorly represented in the general-circulation model. A system of ocean-surface heat flux adjustments is implemented in the tropical Pacific and Indian Oceans in order to reduce the systematic biases. In this version of the general-circulation model, the monsoon,ENSO teleconnection is better simulated, particularly the lag,lead relationships in which weak monsoons precede the peak of El Niño. In part this is related to changes in the characteristics of El Niño, which has a more realistic evolution in its developing phase. A stronger ENSO amplitude in the new model version also feeds back to further strengthen the teleconnection. These results have important implications for the use of coupled models for seasonal prediction of systems such as the monsoon, and suggest that some form of flux correction may have significant benefits where model systematic error compromises important teleconnections and modes of interannual variability. Copyright © 2005 Royal Meteorological Society [source]


The global response to tropical heating in the Madden,Julian oscillation during the northern winter

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 601 2004
Adrian J. Matthews
Abstract A life cycle of the Madden,Julian oscillation (MJO) was constructed, based on 21 years of outgoing long-wave radiation data. Regression maps of NCEP,NCAR reanalysis data for the northern winter show statistically significant upper-tropospheric equatorial wave patterns linked to the tropical convection anomalies, and extratropical wave patterns over the North Pacific, North America, the Atlantic, the Southern Ocean and South America. To assess the cause of the circulation anomalies, a global primitive-equation model was initialized with the observed three-dimensional (3D) winter climatological mean flow and forced with a time-dependent heat source derived from the observed MJO anomalies. A model MJO cycle was constructed from the global response to the heating, and both the tropical and extratropical circulation anomalies generally matched the observations well. The equatorial wave patterns are established in a few days, while it takes approximately two weeks for the extratropical patterns to appear. The model response is robust and insensitive to realistic changes in damping and basic state. The model tropical anomalies are consistent with a forced equatorial Rossby,Kelvin wave response to the tropical MJO heating, although it is shifted westward by approximately 20° longitude relative to observations. This may be due to a lack of damping processes (cumulus friction) in the regions of convective heating. Once this shift is accounted for, the extratropical response is consistent with theories of Rossby wave forcing and dispersion on the climatological flow, and the pattern correlation between the observed and modelled extratropical flow is up to 0.85. The observed tropical and extratropical wave patterns account for a significant fraction of the intraseasonal circulation variance, and this reproducibility as a response to tropical MJO convection has implications for global medium-range weather prediction. Copyright © 2004 Royal Meteorological Society [source]