Home About us Contact | |||
Basic Media (basic + media)
Selected AbstractsPreparation, Characterization and Analytical Applications of a New and Novel Electrically Conducting PolymerELECTROANALYSIS, Issue 15 2006F. D'Eramo Abstract In this study, a glassy carbon electrode (GC) was modified with an electropolymerized film of 1-naphthylamine (1-NAP) with a subsequent overoxidation treatment in 0.2,M sodium hydroxide solution. This polymer p-1-NAPox film coated GC electrode was used for the selective determination of dopamine (DA) in the presence of a triple concentration of ascorbic acid (AA). These studies were performed using cyclic voltammetry and square-wave voltammetry at physiological pH. p-1-NAPox shows an attractive permselectivity, a marked enhancement of the current response and antifouling properties when compared to a bare GC electrode activated in basic media. With a preconcentration time of 3,minutes at open circuit, linear calibration plots were obtained for DA in buffer solution (pH,7.4) over the concentration range from 1×10,6,1×10,4 M with a detection limit of 1.59×10,7 M. [source] Benzo[a]heptalenes from Heptaleno[1,2- c]furans.HELVETICA CHIMICA ACTA, Issue 4 2007Abstract It is shown in this ,Part 2' that heptaleno[1,2- c]furans 1 react thermally in a Diels,Alder -type [4+2] cycloaddition at the furan ring with vinylene carbonate (VC), phenylsulfonylallene (PSA), , -(acetyloxy)acrylonitrile (AAN), and (1Z)-1,2-bis(phenylsulfonyl)ethene (ZSE) to yield the corresponding 1,4-epoxybenzo[d]heptalenes (cf. Schemes,1, 5, 6, and 8). The thermal reaction of 1a and 1b with VC at 130° and 150°, respectively, leads mainly to the 2,3- endo -cyclocarbonates 2,3- endo - 2a and - 2b and in minor amounts to the 2,3- exo -cyclocarbonates 2,3- exo - 2a and - 2b. In some cases, the (P*)- and (M*)-configured epimers were isolated and characterized (Scheme,1). Base-catalyzed cleavage of 2,3- endo - 2 gave the corresponding 2,3-diols 3, which were further transformed via reductive cleavage of their dimesylates 4 into the benzo[a]heptalenes 5a and 5b, respectively (Scheme,2). In another reaction sequence, the 2,3-diols 3 were converted into their cyclic carbonothioates 6, which on treatment with (EtO)3P gave the deoxygenated 1,4-dihydro-1,4-epoxybenzo[d]heptalenes 7. These were rearranged by acid catalysis into the benzo[a]heptalen-4-ols 8a and 8b, respectively (Scheme,2). Cyclocarbonate 2,3- endo - 2b reacted with lithium diisopropylamide (LDA) at ,70° under regioselective ring opening to the 3-hydroxy-substituted benzo[d]heptalen-2-yl carbamate 2,3- endo - 9b (Scheme,3). The latter was O -methylated to 2,3- endo -(P*)- 10b. The further way, to get finally the benzo[a]heptalene 13b with MeO groups in 1,2,3-position, could not be realized due to the fact that we found no way to cleave the carbamate group of 2,3- endo -(P*)- 10b without touching its 1,4-epoxy bridge (Scheme,3). The reaction of 1a with PSA in toluene at 120° was successful, in a way that we found regioisomeric as well as epimeric cycloadducts (Scheme,5). Unfortunately, the attempts to rearrange the products under strong-base catalysis as it had been shown successfully with other furan,PSA adducts were unsuccessful (Scheme,4). The thermal cycloaddition reaction of 1a and 1b with AAN yielded again regioisomeric and epimeric adducts, which could easily be transformed into the corresponding 2- and 3-oxo products (Scheme,6). Only the latter ones could be rearranged with Ac2O/H2SO4 into the corresponding benzo[a]heptalene-3,4-diol diacetates 20a and 20b, respectively, or with trimethylsilyl trifluoromethanesulfonate (TfOSiMe3/Et3N), followed by treatment with NH4Cl/H2O, into the corresponding benzo[a]heptalen-3,4-diols 21a and 21b (Scheme,7). The thermal cycloaddition reaction of 1 with ZSE in toluene gave the cycloadducts 2,3- exo - 22a and - 22b as well as 2- exo,3- endo - 22c in high yields (Scheme,8). All three adducts eliminated, by treatment with base, benzenesulfinic acid and yielded the corresponding 3-(phenylsulfonyl)-1,4-epoxybenzo[d]heptalenes 25. The latter turned out to be excellent Michael acceptors for H2O2 in basic media (Scheme,9). The Michael adducts lost H2O on treatment with Ac2O in pyridine and gave the 3-(phenylsulfonyl)benzo[d]heptalen-2-ones 28a and 3- exo - 28b, respectively. Rearrangement of these compounds in the presence of Ac2O/AcONa lead to the formation of the corresponding 3-(phenylsulfonyl)benzo[a]heptalene-1,2-diol diacetates 30a and 30b, which on treatment with MeONa/MeI gave the corresponding MeO-substituted compounds 31a and 31b. The reductive elimination of the PhSO2 group led finally to the 1,2-dimethoxybenzo[a]heptalenes 32a and 32b. Deprotonation experiments of 32a with t -BuLi/N,N,N,,N,-tetramethylethane-1,2-diamine (tmeda) and quenching with D2O showed that the most acid CH bond is HC(3) (Scheme,9). Some of the new structures were established by X-ray crystal-diffraction analyses (cf. Figs.,1, 3, 4, and 5). Moreover, nine of the new benzo[a]heptalenes were resolved on an anal. Chiralcel OD-H column, and their CD spectra were measured (cf. Figs.,8 and 9). As a result, the 1,2-dimethoxybenzo[a]heptalenes 32a and 32b showed unexpectedly new Cotton -effect bands just below 300,nm, which were assigned to chiral exciton coupling between the heptalene and benzo part of the structurally highly twisted compounds. The PhSO2 -substituted benzo[a]heptalenes 30b and 31b showed, in addition, a further pair of Cotton -effect bands in the range of 275,245,nm, due to chiral exciton coupling of the benzo[a]heptalene chromophore and the phenylsulfonyl chromophore (cf. Fig.,10). [source] An expedient synthesis of an isofervenulin analogueJOURNAL OF HETEROCYCLIC CHEMISTRY, Issue 4 2004Andrew Bach An efficient approach has been developed for the synthesis of an isofervenulin analogue 1 employing a one-pot condensation-substitution reaction of a chlorocarboethoxytriazine (electrophile) with a urea (nucleophile). The resulting cyclization reaction resulted in the synthesis of a pyrimido-heterocycle in good yield in either acidic or basic media. The former was assisted by utilizing trimethylsilyl chloride. [source] Study of the adsorption of benzimidazole and 2-mercaptobenzothiazole on an iron surface by confocal micro-Raman spectroscopyJOURNAL OF RAMAN SPECTROSCOPY, Issue 12 2004G. Wang Abstract Benzimidazole (BIMH) and 2-mercaptobenzothiazole (HMBT) dissolved in ethanol were chosen for the investigation of the interaction between organic molecules and surface atoms of iron or iron oxide by confocal micro-Raman spectroscopy. Both BIMH and HMBT show enhanced and highly structured spectra in the 200,1500 cm,1 region when the iron is at a potential of ca ,0.7 to ,0.9 V in a neutral medium. BIMH had a weak interaction with the iron surface in a basic medium but it was chemically adsorbed in a neutral medium. HMBT was chemically adsorbed on the iron via the exocyclic S and N atoms in acidic and neutral solutions, whereas in basic media it was bound electrostatically. Copyright © 2004 John Wiley & Sons, Ltd. [source] Conformations and properties of the L -tryptophyl-containing peptides in solution, depending on the pH,Theoretical study vs. experimentsBIOPOLYMERS, Issue 8 2010Bojidarka B. Ivanova Abstract The conformational preference and electronic properties of three L -tryptophyl-containing dipeptides, i.e., glycyl- L -tryptophane (H-Gly-Trp-OH), L -alanyl- L -tryptophane (H-Ala-Trp-OH), and L -methionyl- L -tryptophane (L -Met-Trp-OH) in solution depending on the pH of the media are studied both theoretically and experimentally. The effect of the protonation of the COO, and deprotonation of the NH as well as the alkaline hydrolysis of the amide fragment in a strong basic media on the electronic spectra are discussed. Ab initio and density functional theory (DFT) methods as well as the time-dependent DFT (TD-DFT) method as a function of the basis set are performed with a view to obtain the geometry and electronic properties of all of the species as well as the intermediate, obtained in the alkaline hydrolysis mechanism. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 727,734, 2010. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] Large Di- and Heptafullerene Polyelectrolytes Composed of C60 Building Blocks Having a Highly Symmetrical Hexakisaddition PatternCHEMISTRY - A EUROPEAN JOURNAL, Issue 30 2009Patrick Witte Dr. Abstract We report here on the synthesis of three new prototypes (types,I,III) of very large fullerene-based polyelectrolytes which can carry up to 60 charges on their periphery. All fullerene moieties incorporated in these macromolecular structures have an octahedral hexakisaddition pattern. Dumbbell-shaped icosacarboxylate 5 (type,I), which can accumulate up to twenty negative charges, is very soluble in methanol as well as in neutral and basic water. On the other hand, Janus dumbbell 13 (type,II) contains both positively and negatively chargeable fullerene building blocks and is very soluble in acidic and basic media. However, in the region of the isoelectric point at pH,6.0,6.5 it precipitates as a pale orange solid due to pronounced intermolecular Coulomb interactions. Giant heptafullerene 15 (type,III) can store up to 60 positive charges in its periphery and is the largest molecular polyelectrolyte with defined three-dimensional structure. [source] |