Thin Crystal (thin + crystal)

Distribution by Scientific Domains


Selected Abstracts


Growth of big single crystals of a new magnetic superconducting double perovskite Ba2PrRu1,xCuxO6

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 2 2006
S. M. Rao
Abstract Single crystals of Ba2PrRu1,xCuxO6 with x = 0 to 0.2, have been grown from high temperature solutions of a mixture of PbO-PbF2 in the temperature range 1100,1200 °C. Thin crystals with mostly a hexagonal and triangular plate like habit measuring up to 1,2 mm across and 0.1,0.2 mm thick were obtained. The size, quality and morphology of the crystals were improved by varying the solution volume as well as additives like B2O3. Large crystals measuring up to 3 mm across and 0.3 to 0.5 mm thick were obtained with 5,7 wt% solute concentration and 0.51 wt% of B2O3. The ZFC curves exhibit a spin glass like behavior with x = 0 and a superconducting transition at 8 to 11 K depending on x = 0.05 to 0.1. The transition was also influenced by the growth temperature and post growth annealing. Powder x-ray diffraction, EDS and Raman spectroscopic measurements confirm the presence of Cu in the crystals. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


A novel epitaxially grown LSO-based thin-film scintillator for micro-imaging using hard synchrotron radiation

JOURNAL OF SYNCHROTRON RADIATION, Issue 5 2010
Paul-Antoine Douissard
The efficiency of high-resolution pixel detectors for hard X-rays is nowadays one of the major criteria which drives the feasibility of imaging experiments and in general the performance of an experimental station for synchrotron-based microtomography and radiography. Here the luminescent screen used for the indirect detection is focused on in order to increase the detective quantum efficiency: a novel scintillator based on doped Lu2SiO5 (LSO), epitaxially grown as thin film via the liquid phase epitaxy technique. It is shown that, by using adapted growth and doping parameters as well as a dedicated substrate, the scintillation behaviour of a LSO-based thin crystal together with the high stopping power of the material allows for high-performance indirect X-ray detection. In detail, the conversion efficiency, the radioluminescence spectra, the optical absorption spectra under UV/visible-light and the afterglow are investigated. A set-up to study the effect of the thin-film scintillator's temperature on its conversion efficiency is described as well. It delivers knowledge which is important when working with higher photon flux densities and the corresponding high heat load on the material. Additionally, X-ray imaging systems based on different diffraction-limited visible-light optics and CCD cameras using among others LSO-based thin film are compared. Finally, the performance of the LSO thin film is illustrated by imaging a honey bee leg, demonstrating the value of efficient high-resolution computed tomography for life sciences. [source]


Phase modulation effects in X-ray diffraction from a highly deformed crystal with variable strain gradient

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 5 2009
M. Shevchenko
The X-ray interbranch scattering by lattice distortions is studied for a thin crystal whose thickness is appreciably less than the conventional X-ray extinction length. The concept of interbranch phase modulation of the X-ray wavefield is extended to the case of a large gradient which depends on depth inside the crystal. The prominent interbranch features of the diffracted intensity are also established within this concept. Numerical calculations of the diffracted intensity are presented for an exponential strain gradient model to illustrate this. Diffraction (extinction) contrast is discussed for a strongly deformed specimen containing a single dislocation. It is predicted that for large values of the X-ray extinction length the extinction contrast may arise even in the case of a very thin crystal. This effect, owing to the interbranch phase changes of the waves scattered in the deformed matrix, is observed in experiments with protein crystals. [source]


Measurement of X-ray rocking curves in the Bragg,Laue case

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 5 2008
Masami Yoshizawa
X-ray rocking curves in the Bragg,Laue case diffracting from the side surface of a plane-parallel crystal have been measured using a high-resolution optical system. The full width at half-maximum of the rocking curves is approximately three times narrower than that measured from the top surface. The characteristics of the transmitted beam from the side surface are almost the same as those through a thin crystal in the Bragg case. The rocking curves and the direction of X-ray energy flow in the crystal observed in the experiment can be reproduced using Wagner's approach [Wagner (1956), Z. Phys.146, 127,168]. [source]


Synchrotron X-ray and DSC Studies of the Phase Behaviour of Poly(diethylene glycol p,p,-bibenzoate)

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 17 2003
Ernesto Pérez
Abstract Time-resolved synchrotron X-ray and DSC experiments were applied to investigate the phase behaviour of poly(diethylene glycol p,p,-bibenzoate), PDEB. The DSC results are indicative of the formation of a smectic mesophase, previously identified as a SmCA type, which can be easily quenched down to room temperature. However, the synchrotron results show that the SmCA phase undergoes some kind of ordering or transformation at temperatures below 110,°C. Moreover, the annealing of PDEB at temperatures above Tg for sufficiently long times leads to the formation of a highly ordered structure, although very thin crystals and low crystallinities are obtained. Scattering profiles corresponding to sample PDEB85 in a melting experiment. [source]


Chiral determination: direct interpretation of convergent-beam electron diffraction patterns using the series expansion of Cowley and Moodie

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 4 2007
Andrew W. S. Johnson
Given a small number of structure factors of a known chiral structure of unknown hand, it is shown that the hand can be determined from the sign of the contrast difference of two reflections in a suitably oriented convergent-beam electron diffraction (CBED) pattern. A simple formula for this difference, which takes into account all the significant second-order scattering, is derived using the series expansion of Cowley and Moodie for n -beam diffraction. The reason for the success of a three-beam interpretation is investigated. The method is applied to patterns from thin crystals in which a mirror projection symmetry can be found and its validity is demonstrated by agreement with experiment using samples of known hand. The advantages of recording patterns near major zone axes are discussed as well as some other experimental aspects of chiral determination using CBED. [source]


Know your dose: RADDOSE

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 4 2010
Karthik S. Paithankar
The program RADDOSE is widely used to compute the dose absorbed by a macromolecular crystal during an X-ray diffraction experiment. A number of factors affect the absorbed dose, including the incident X-ray flux density, the photon energy and the composition of the macromolecule and of the buffer in the crystal. An experimental dose limit for macromolecular crystallography (MX) of 30,MGy at 100,K has been reported, beyond which the biological information obtained may be compromised. Thus, for the planning of an optimized diffraction experiment the estimation of dose has become an additional tool. A number of approximations were made in the original version of RADDOSE. Recently, the code has been modified in order to take into account fluorescent X-ray escape from the crystal (version 2) and the inclusion of incoherent (Compton) scattering into the dose calculation is now reported (version 3). The Compton cross-section, although negligible at the energies currently commonly used in MX, should be considered in dose calculations for incident energies above 20,keV. Calculations using version 3 of RADDOSE reinforce previous studies that predict a reduction in the absorbed dose when data are collected at higher energies compared with data collected at 12.4,keV. Hence, a longer irradiation lifetime for the sample can be achieved at these higher energies but this is at the cost of lower diffraction intensities. The parameter `diffraction-dose efficiency', which is the diffracted intensity per absorbed dose, is revisited in an attempt to investigate the benefits and pitfalls of data collection using higher and lower energy radiation, particularly for thin crystals. [source]