Home About us Contact | |||
Thermo Gravimetric Analysis (thermo + gravimetric_analysis)
Selected AbstractsMulti-walled carbon nanotubes encapsulated with polyurethane and its nanocompositesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 14 2008Xiao Wang Abstract Poly(acryloyl chloride) (PACl) was employed to enhance the surface of multi-walled carbon nanotubes (MWCNTs). MWCNTs were first acid treated to generate hydroxyl groups on the surface, which was reacted with PACl to obtain an encapsulation. The numerous acryloyl chloride groups on the out layer were esterified with a proper amount of ethylene glycol (EG). Subsequently, 4,4,-methylenebis (phenylisocyanate) (MDI) and 1,4-butanediol (BDO) were introduced into the system, and a polyurethane (PU) layer was formed in situ. The formation of PU layers on MWCNTs was confirmed by Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscope (XPS). The morphology of encapsulated MWCNTs was observed by transmission electron microscope (TEM) and scanning electron microscope (SEM). Thermo gravimetric analysis (TGA) showed the grafted polymer fraction was up to 90%. On introducing the modified MWCNTs into a PU matrix, an increase in tensile strength by 60.6% and improvement in modulus by 6.3% over neat PU was observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4857,4865, 2008 [source] Metallocene based polyolefin: a potential candidate for the replacement of flexible poly (vinyl chloride) in the medical fieldPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 9 2010M. C. Sunny Abstract A comparative assessment of the performance properties of metallocene polyolefin (m-PO) with those of plasticized poly (vinyl chloride) (pPVC) and ethylene vinyl acetate (EVA) copolymer having 18% vinyl acetate content (EVA-18), the two common polymers used for flexible medical products, is carried out. The preliminary evaluation of the processability, mechanical properties, and thermal stability of the new material, m-PO is described. The processability parameters like mixing torque and melt viscosity of m-PO are found to be comparable with those of pPVC and EVA-18. Mechanical properties such as tensile strength, elongation at break, and tear strength (TS) of m-PO are much higher than that of pPVC and EVA-18. Thermo gravimetric analysis (TGA) indicates that the thermal degradation of m-PO takes place only at temperatures above 340°C and can be processed at 170°C without much damage. Oxygen and carbon dioxide permeabilities of m-PO at three different temperatures (10, 25, and 40°C) are evaluated and compared with those of pPVC and EVA-18. It could be seen that the permeabilities of both the gases for m-PO at three temperatures were lower than those of pPVC and EVA. Biological evaluation of m-PO is carried out by assessing its cytotoxicity, hemolytic property, and blood clotting initiation. The cytotoxicity studies indicate that m-PO is non-toxic to the monolayer of L929 mammalian fibroblast cell lines on direct contact or the exposure of its extract. Non-hemolytic property of m-PO by direct contact as well as test on extract is revealed both in static and in dynamic conditions. Blood clotting time experiments indicate that the initiation of blood clotting due to m-PO is faster than that of pPVC and EVA-18. Copyright © 2009 John Wiley & Sons, Ltd. [source] Growth of tetrakis thiourea potassium iodide as new second order optical materialCRYSTAL RESEARCH AND TECHNOLOGY, Issue 4 2008J. Thomas Joseph Prakash Abstract A novel organometallic nonlinear optical (NLO) crystal, namely thiourea complex of tetrakis thiourea potassium iodide (TTPI), has been grown by slow evaporation solution growth technique. The harvested crystal is large in size. To our knowledge there is no report is available for the bulk size single crystal of TTPI. This material has a positive temperature coefficient and has been grown by slow evaporation solution growth technique. The grown crystal have been characterized by employing several techniques such as single crystal and powder X-ray diffraction, FTIR, UV-Vis-NIR spectra, thermo gravimetric analyses respectively. Etching studies have also been carried out in order to know the surface defects on the as grown specimen of TTPI. The relative second harmonic generation efficiency have been tested by using Nd:YAG laser as source. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Antibacterial, spectral and thermal aspects of drug based-Cu(II) mixed ligand complexesAPPLIED ORGANOMETALLIC CHEMISTRY, Issue 10 2009G. J. Kharadi Abstract The antibiotic agent clioquinol is well known for its drug design and coordinating ability towards metal ions. Copper(II) mixed-ligand complexes of clioquinol with various uninegative bidentate ligands were prepared. The structure of the synthesized complexes was characterized using elemental analyses, infrared spectra, 1H-NMR spectra, electronic spectra, magnetic measurements, FAB mass spectrum and thermo gravimetric analyses. The kinetic parameters such as order of reaction (n) and the energy of activation (Ea) are reported using the Freeman,Carroll method. The pre-exponential factor (A), the activation entropy (,S#), the activation enthalpy (,H#) and the free energy of activation (,G#) were calculated. Complexes were also screened for their in vitro antibacterial activity against a range of Gram-positive and Gram-negative bacteria in order to set the precursors for anti-tumourigenic agent. Copyright © 2009 John Wiley & Sons, Ltd. [source] Polypropylene nanocomposite film: A critical evaluation on the effect of nanoclay on the mechanical, thermal, and morphological behaviorJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010S. K. Sharma Abstract Polypropylene (PP)/clay nanocomposites prepared by melt blending technique using different percentages of clay with and without maleic anhydride grafted PP (MA-PP) were studied. The intercalated and exfoliated structure of nanocomposites was characterized by X-Ray Diffraction (XRD) and transmission electron microscopy (TEM). Because of the typical intercalated and exfoliated structure, the tensile modulus of the nanocomposites were improved significantly as compared to virgin PP. The viscoelastic behavior of the nanocomposites was studied by dynamical mechanical analysis (DMA) and the results showed that with the addition of treated clay to PP there was substantial improvement in storage modulus increases. The thermal stability and crystallization of the PP nanocomposites as studied by differential scanning calorimeter (DSC) and thermo gravimetric analysis (TGA) were also improved significantly compared to PP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Pervaporation of tertiary butanol/water mixtures through chitosan membranes cross-linked with toluylene diisocyanate,JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 12 2005Smitha Biduru Abstract Membranes made from 84% deacetylated chitosan biopolymer were cross-linked by a novel method using 2,4-toluylene diisocyanate (TDI) and tested for the separation of t -butanol/water mixtures by pervaporation. The unmodified and cross-linked membranes were characterized by Fourier transform infra red (FTIR) spectroscopy, X-ray diffraction (XRD) studies and sorption studies in order to understand the polymer,liquid interactions and separation mechanisms. Thermal stability was analyzed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA) while tensile strength measurement was carried out to assess mechanical strength. The membrane appears to have good potential for breaking the aqueous azeotrope of 88.2 wt% t -butanol by giving a high selectivity of 620 and substantial water flux (0.38 kg m,2 hr,1). The effects of operating parameters such as feed composition, membrane thickness and permeate pressure on membrane performance were evaluated. Copyright © 2005 Society of Chemical Industry [source] Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cellsJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 16 2009Guoqing Qian Abstract A high molecular weight, thermally and chemical stable hexafluoroisopropylidene containing polybenzimidazole (6F-PBI) was synthesized from 3,3,-diaminobenzidine (TAB) and 2,2-bis(4-carboxyphenyl) hexafluoropropane (6F-diacid) using polyphosphoric acid (PPA) as both the polycondensation agent and the polymerization solvent. Investigation of polymerization conditions to achieve high molecular weight polymers was explored via stepwise temperature control, monomer concentration in PPA, and final polymerization temperature. The polymer characterization included inherent viscosity (I.V.) measurement and GPC as a determination of polymer molecular weight, thermal and chemical stability assessment via thermo gravimetric analysis and Fenton test, respectively. The resulting high molecular weight polymer showed excellent thermal and chemical stability. Phosphoric acid doped 6F-PBI membranes were prepared using the PPA process. The physiochemical properties of phosphoric acid doped membranes were characterized by measuring the phosphoric acid doping level, mechanical properties, and proton conductivity. These membranes showed higher phosphoric acid doping levels and higher proton conductivities than the membranes prepared by the conventional membrane fabrication processes. These membranes had sufficient mechanical properties to be easily fabricated into membrane electrode assemblies (MEA) and the prepared MEAs were tested in single cell fuel cells under various conditions, with a focus on the high temperature performance and fuel impurity tolerance. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4064,4073, 2009 [source] A Diels-Alder/retro Diels-Alder strategy to synthesize polymers bearing maleimide side chainsJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 20 2007Tugba Dispinar Abstract Polymers containing thiol-reactive maleimide groups on their side chains have been synthesized by utilization of a novel methacrylate monomer containing a masked maleimide. Diels-Alder reaction between furan and maleimide was adapted for the protection of the reactive maleimide double bond prior to polymerization. AIBN initiated free radical polymerization was utilized for synthesis of copolymers containing masked maleimide groups. No unmasking of the maleimide group was evident under the polymerization conditions. The maleimide groups in the side chain of the polymers were unmasked into their reactive form by utilization of retro Diels-Alder reaction. This cycloreversion was monitored by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), and 1H and 13C NMR spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4545,4551, 2007 [source] Use of the Surfmer 11-(Methacryloyloxy) undecanylsulfate MET as a Comonomer in Polystyrene and Poly(methyl methacrylate)MACROMOLECULAR SYMPOSIA, Issue 1 2004P.C. Hartmann Abstract The polymerizable surfactant sodium 11-(methacryloyloxy) undecanylsulfate (MET) has been synthesized with high purity, and its thermal stability and phase transitions have been studied by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. MET has been copolymerized in solution with methylmethacrylate (MMA) or styrene (S), initiated by azo-bis-isobutyronitrile (AIBN). The copolymers thus obtained have been studied by Gel Permeation Chromatography (GPC), Transmission Electron Microscopy (TEM), and DSC. Due to the incompatibility between the polar head of the MET units and the non polar S or MMA units, MET units organize in the amorphous polymer matrix and arrange in lamellar structures. [source] Effect of rotational speed of twin screw extruder on the microstructure and rheological and mechanical properties of nanoclay-reinforced polypropylene nanocompositesPOLYMER ENGINEERING & SCIENCE, Issue 8 2006Piia Peltola The morphology and rheological and mechanical properties of nanoclay-reinforced polypropylene nanocomposites were investigated with aid of transmission electron microscopy (TEM), thermo gravimetric analysis, rheometry, and mechanical tests. The organically modified silicate (montmorillonite) was used as a reinforcing material and maleic anhydride-grafted polypropylene oligomer as a compatibilizer to improve the clay dispersion and adhesion. The object of the study was to examine the effect of screw speed of the co-rotating twin-screw extruder on the clay exfoliation and nanocomposite properties. Also, the effect of compatibilizing agent was taken into account. The main result of the study was that nanocomposites showed both intercalated and exfoliated structures depending on the screw speeds of extruder. TEM images revealed that the dispersion of silicate layers was greatly influenced by the screw speed. However, even when the silicate layers were highly exfoliated, there was no remarkable effect on mechanical properties of the nanocomposite. POLYM. ENG. SCI. 46:995,1000, 2006. © 2006 Society of Plastics Engineers. [source] Application of carbon arc-generated Mo- and W-based catalyst systems to the ROMP of norborneneAPPLIED ORGANOMETALLIC CHEMISTRY, Issue 9 2009Bülent Düz Abstract This study focuses on the application of the carbon arc-generated molybdenum- and tungsten-based catalyst systems, MoCl5C and WCl6C, to effect ring-opening metathesis polymerization (ROMP) of bicyclo[2.2.1]hept-2-ene (norbornene). The results are compared with those previously obtained by the electrochemically generated MoCl5,AlCH2Cl2 and WCl6,AlCH2Cl2 systems. The polymer products are characterized using 1H and 13C NMR, gel permeation chromatography, differential scanning calorimetry and thermo gravimetric analysis. According to NMR spectra analyses, the molybdenum-based catalyst system produced polynorbornene with ca 48% cis structure whereas tungsten system produced ca 56% cis structure polynorbornene and in both cases the polynorbornene had a blocky distribution. Copyright © 2009 John Wiley & Sons, Ltd. [source] Study on the release characteristics of HCN and NH3 during coal gasificationASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2010Lu Shi Sun Abstract The release characteristics of the coal-gasification products were inspected in the thermo gravimetric analysis and the Fourier transform infrared spectroscopy (TGA-FTIR) online instruments. Pingdingshan bituminous coals of three sizes had been selected to study in three kinds of atmosphere. The study indicated that there are remarkable influences of the sizes and the atmosphere to the release characteristics of HCN and NH3. The smaller the sizes are, the faster the volatile matter releases, thus the releasing velocity of HCN is easy to most early. Meanwhile, the more the pores are, the more are the active locations for coal gasification. The concentration of CO2 ([CO2]) could influence the releasing characteristic of the N-containing components: The lower the concentration of CO2, the more difficult is the HCN conversion to NH3 or N2. The littler the coverage rate of active locations is, and the slower C and N containing function component react and the slower active H releases, the slower is the transformation of HCN to NH3 to increase the concentration of HCN. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source] |