Thermal Boundary Layer (thermal + boundary_layer)

Distribution by Scientific Domains


Selected Abstracts


A spatially advancing turbulent flow and heat transfer in a curved channel

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 1 2010
Koji Matsubara
Abstract Direct numerical simulation was performed for a spatially advancing turbulent flow and heat transfer in a two-dimensional curved channel, where one wall was heated to a constant temperature and the other wall was cooled to a different constant temperature. In the simulation, fully developed flow and temperature from the straight-channel driver was passed through the inlet of the curved-channel domain. The frictional Reynolds number was assigned 150, and the Prandtl number was given 0.71. Since the flow field was examined in the previous paper, the thermal features are mainly targeted in this paper. The turbulent heat flux showed trends consistent with a growing process of large-scale vortices. In the curved part, the wall-normal component of the turbulent heat flux was twice as large as the counterpart in the straight part, suggesting active heat transport of large-scale vortices. In the inner side of the same section, temperature fluctuation was abnormally large compared with the modest fluctuation of the wall-normal velocity. This was caused by the combined effect of the large-scale motion of the vortices and the wide variation of the mean temperature; in such a temperature distribution, large-scale ejection of the hot fluid near the outer wall, which is transported into the near inner-wall region, should have a large impact on the thermal boundary layer near the inner wall. Wave number decomposition was conducted for various statistics, which showed that the contribution of the large-scale vortex to the total turbulent heat flux normal to the wall reached roughly 80% inside the channel 135 downstream from the curved-channel inlet. 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20275 [source]


Prediction of vortex penetration depth at thermal stratification by cavity flow in a branch pipe with closed end (effect of heat radiation condition on temperature fluctuations)

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 1 2007
Kouji Shiina
Abstract In a branch pipe with one closed end, the cavity flow penetrates into the branch pipe from the main loop and a thermal boundary layer occurs because the cavity flow is a hot fluid, but heat removal causes a colder fluid in the branch pipe. This thermal stratification may affect the structural integrity. Therefore, a pipe design standard to suppress thermal fatigue should be established. The pipe design standard consists of the maximum penetration depth Lsv and the minimum penetration depth Lsh. In order to establish an evaluation method for Lsh, a visualization test and a temperature fluctuation test were carried out. A theoretical formula for thermal stratification was introduced from the heat balance model. Then the model was used to obtain an empirical equation from the map of fluid temperature fluctuation. This method can predict the vortex penetration depth by cavity flow in horizontal branch pipes. 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(1):38,55, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20135 [source]


Computation of heat transfer enhancement in a plate-fin heat exchanger with triangular inserts and delta wing vortex generator

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9 2010
Gulshan Sachdeva
Abstract Longitudinal vortices disrupt the growth of the thermal boundary layer, thereby the vortex generators producing the longitudinal vortices are well known for the enhancement of heat transfer in compact heat exchangers. The present investigation determines the heat transfer characteristics with secondary flow analysis in plate fin triangular ducts with delta wing vortex generators. This geometrical configuration is investigated for various angles of attack of the wing i.e. 15, 20, 26 and 37 and Reynolds numbers 100 and 200. The constant wall temperature boundary condition is used. The solution of the complete Navier Stokes equation and the energy equation is carried out using the staggered grid arrangement. The performance of the combination of triangular secondary fins and delta wing with stamping on slant surfaces has also been studied. Copyright 2009 John Wiley & Sons, Ltd. [source]


Millisecond catalytic wall reactors: I. Radiant burner

AICHE JOURNAL, Issue 5 2001
J. M. Redenius
Short-contact-time reactors have potential for high throughput in reactors much smaller than their traditional counterparts. While they operate adiabatically, heat can be exchanged at short contact time by integrating heat exchange into the reactor. Hot effluent of exothermic reaction systems can be redirected over feed gases to recuperate a portion of the sensible heat. Placing catalyst directly on reactor walls eliminates the resistance to heat transfer in the thermal boundary layer so that heat released by combustion can be effectively coupled to an emitter, such as in a radiant burner. A radiant heater was constructed, operated, and simulated incorporating short contact time, energy recuperation, and a catalytic wall. This burner operated stably for many hours at a firing rate from ,50 to > 160 kW/m2 at a radiant temperature of 950 to 1,150 K at a radiant efficiency of ,60% with a residence time in the reacting zone of ,10 ms. This reactor was modeled using 2-D Navier-Stokes equations including detailed models for chemistry and heat transport. Temperature and compositions predicted agreed well with experimental measurements. [source]