Thermal Analysis Data (thermal + analysis_data)

Distribution by Scientific Domains


Selected Abstracts


Preparation and properties of new thermally stable poly(ether imide amide)s

POLYMER INTERNATIONAL, Issue 8 2004
Shahram Mehdipour-Ataei
Abstract 2,6-Bis(4-aminophenoxy)pyridine was prepared via reaction of 4-aminophenol with 2,6-dichloropyridine in the presence of potassium carbonate. Reaction of the diamine with two mol of trimellitic anhydride afforded a diacid with preformed imide structures. Poly(ether imide amide)s were prepared by polycondensation reactions of the diacid with different diamines in the presence of triphenyl phosphite. All the monomers and polymers were fully characterized and the physical properties of the polymers including solution viscosity, thermal stability, thermal behavior and solubility were studied. Thermal analysis data showed the polymers to have high thermal stability. Copyright 2004 Society of Chemical Industry [source]


Rheological and Thermal Properties of Polylactide/Silicate Nanocomposites Films

JOURNAL OF FOOD SCIENCE, Issue 2 2010
Jasim Ahmed
ABSTRACT:, Polylactide (DL)/polyethylene glycol/silicate nanocomposite blended biodegradable films have been prepared by solvent casting method. Rheological and thermal properties were investigated for both neat amorphous polylactide (PLA-DL form) and blend of montmorillonite (clay) and poly (ethylene glycol) (PEG). Melt rheology of the PLA individually and blends (PLA/clay; PLA/PEG; PLA/PEG/clay) were performed by small amplitude oscillation shear (SAOS) measurement. Individually, PLA showed an improvement in the viscoelastic properties in the temperature range from 180 to 190 C. Incorporation of nanoclay (3% to 9% wt) was attributed by significant improvements in the elastic modulus (G,) of PLA/clay blend due to intercalation at higher temperature. Both dynamic modulii of PLA/PEG blend were significantly reduced with addition of 10% PEG. Rheometric measurement could not be conducted while PLA/PEG blends containing 25% PEG. A blend of PLA/PEG/clay (68/23/9) showed liquid-like properties with excellent flexibility. Thermal analysis of different clay loading films indicated that the glass transition temperatures (Tg) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the,Tg of the blend (PLA/PEG and PLA/PEG/clay) significantly. Both rheological and thermal analysis data supported plasticization and flexibility of the blended films. It is also interesting to study competition between PLA and PEG for the intercalation into the interlayer spacing of the clay. This study indicates that PLA/montmorillonite blend could serve as effective nano-composite for packaging and other applications. [source]


Thermo-Raman spectroscopy of synthetic nesquehonite , implication for the geosequestration of greenhouse gases

JOURNAL OF RAMAN SPECTROSCOPY, Issue 9 2008
Matthew C. Hales
Abstract Pure nesquehonite (MgCO33H2O)/Mg(HCO3)(OH)2H2O was synthesised and characterised by a combination of thermo-Raman spectroscopy and thermogravimetry with evolved gas analysis. Thermo-Raman spectroscopy shows an intense band at 1098 cm,1, which shifts to 1105 cm,1 at 450 C, assigned to the ,1CO32, symmetric stretching mode. Two bands at 1419 and 1509 cm,1 assigned to the ,3 antisymmetric stretching mode shift to 1434 and 1504 cm,1 at 175 C. Two new peaks at 1385 and 1405 cm,1 observed at temperatures higher than 175 C are assigned to the antisymmetric stretching modes of the (HCO3), units. Throughout all the thermo-Raman spectra, a band at 3550 cm,1 is attributed to the stretching vibration of OH units. Raman bands at 3124, 3295 and 3423 cm,1 are assigned to water stretching vibrations. The intensity of these bands is lost by 175 C. The Raman spectra were in harmony with the thermal analysis data. This research has defined the thermal stability of one of the hydrous carbonates, namely nesquehonite. Thermo-Raman spectroscopy enables the thermal stability of the mineral nesquehonite to be defined, and, further, the changes in the formula of nesquehonite with temperature change can be defined. Indeed, Raman spectroscopy enables the formula of nesquehonite to be better defined as Mg(OH)(HCO3)2H2O. Copyright 2008 John Wiley & Sons, Ltd. [source]


Electronic and Vibrational Properties of Fluorenone in the Channels of Zeolite L

CHEMISTRY - A EUROPEAN JOURNAL, Issue 10 2004
Andr Devaux Dr.
Abstract Fluorenone (C13H8O) was inserted into the channels of zeolite L by using gas-phase adsorption. The size, structure, and stability of fluorenone are well suited for studying host,guest interactions. The Fourier transform IR, Raman, luminescence, and excitation spectra, in addition to thermal analysis data, of fluorenone in solution and fluorenone/zeolite L are reported. Normal coordinate analysis of fluorenone was performed, based on which IR and Raman bands were assigned, and an experimental force field was determined. The vibrational spectra can be used for nondestructive quantitative analysis by comparing a characteristic dye band with a zeolite band that has been chosen as the internal standard. Molecular orbital calculations were performed to gain a better understanding of the electronic structure of the system and to support the interpretation of the electronic absorption and luminescence spectra. Fluorenone shows unusual luminescence behavior in that it emits from two states. The relative intensity of these two bands depends strongly on the environment and changes unexpectedly in response to temperature. In fluorenone/zeolite L, the intensity of the 300 nm band (lifetime 9 ,s) increases with decreasing temperature, while the opposite is true for the 400 nm band (lifetime 115 ,s). A model of the host,guest interaction is derived from the experimental results and calculations: the dye molecule sits close to the channel walls with the carbonyl group pointing to an Al3+ site of the zeolite framework. A secondary interaction was observed between the fluorenone's aromatic ring and the zeolite's charge-compensating cations. [source]