Home About us Contact | |||
Therapeutic Modulation (therapeutic + modulation)
Selected AbstractsModulating tone: the overture of S1P receptor immunotherapeuticsIMMUNOLOGICAL REVIEWS, Issue 1 2008Hugh Rosen Summary: Modulation of complex functions within the immune system has proven to be surprisingly sensitive to alterations in the lysophospholipid sphingosine 1-phosphate (S1P) receptor-ligand rheostat. This has become increasingly evident from both chemical and genetic manipulation of the S1P system, with pharmacological effects upon lymphoid cells, dendritic cell function, as well as vascular interfaces. The integrated immune system, perhaps as a result of its relatively recent evolutionary ontogeny, has selected for a number of critical control points regulated by five distinct high affinity G-protein-coupled receptor subtypes with a shared ligand, with receptors distributed on lymphocytes, dendritic cells, and endothelium. All of these cellular components of the axis are capable of modulating immune responses in vivo, with the impact on the immune response being very different from classical immunosuppressants, by virtue of selective spatial and temporal sparing of humoral and myeloid elements of host defense. Pharmacological subversion of the S1P rheostat is proving to be clinically efficacious in multiple sclerosis, and both the scope and limitations of therapeutic modulation of the S1P axis in immunotherapy are becoming clearer as understanding of the integrated chemical physiology of the S1P system emerges. [source] CAT2 arginine transporter deficiency significantly reduces iNOS-mediated NO production in astrocytesJOURNAL OF NEUROCHEMISTRY, Issue 2 2003Cathyryne K. Manner Abstract We have previously demonstrated that genetic ablation of cationic amino acid transporter 2 (Cat2) significantly inhibits nitric oxide (NO) production by inducible nitric oxide synthase (iNOS) in activated macrophages. Here we report that iNOS activity is impaired by 84% in activated Cat2 -deficient astrocytes. Cat2 ablation appears to reduce astrocyte NO synthesis by decreasing the uptake of the sole precursor, arginine, as well as by reducing the expression of iNOS following activation. Excessive or dysregulated NO production by activated astrocytes and other CNS cell types has been implicated in the pathogenesis of neurological disorders. Our results support the idea that manipulation of CAT2 transporter function might be useful for the therapeutic modulation of iNOS activity. [source] A VEGF Trap Inhibits the Beneficial Effect of bFGF on Vasoreactivity in Corporal Tissues of Hypercholesterolemic RabbitsTHE JOURNAL OF SEXUAL MEDICINE, Issue 9 2008Donghua Xie MD ABSTRACT Introduction., Hypercholesterolemia causes a decrease in normal corporal tissue vasoreactivity in a preclinical model of erectile dysfunction. Previous studies have shown that intracorporal injection (ICI) of basic fibroblast growth factor (bFGF) reverses some of the detrimental vasoreactivity effects of hypercholesterolemia and increases vascular endothelial growth factor (VEGF) expression. Aim., We sought to determine whether the beneficial effects of bFGF are VEGF-mediated. Methods., A total of 32 New Zealand white rabbits were fed a 1% cholesterol diet for 6 weeks and randomly divided into four groups (N = 8/group). Group 1 received a 2.5 µg bFGF ICI and 2.5 × 1011 viral particle unit (vpu) of adenovirus encoding ,-galactosidase (Ad,-gal) ICI, 10 days later. Group 2 received a 2.5 µg bFGF ICI and 2.5 × 1011 vpu of adenovirus encoding soluble VEGF receptor (VEGFR) (AdsVEGFR, a VEGF trap) ICI, 10 days later. Group 3 received phosphate buffered saline solution (PBS) ICI and 2.5 × 1011 vpu Ad,-gal ICI, 10 days later. Group 4 received PBS ICI and 2.5 × 1011 vpu AdsVEGFR ICI, 10 days later. Main Outcome Measures., The corpus cavernosum was harvested for vasoreactivity studies 10 days post viral injection. The effective dose of 50% maximum relaxation was determined. VEGF levels were assessed by enzyme-linked immunosorbent assay. Total and phoshorylated Akt and endothelial nitric oxide were analyzed by Western blot. Results., Endothelium-dependent vasoreactivity was significantly greater in Group 1 vs. all other groups. The VEGF trap eliminated the beneficial effects of bFGF on endothelium-dependent vasoreactivity and decreased Akt and nitric oxide phosphorylation. Conclusions., These data demonstrate that VEGF activity contributes much of the therapeutic modulation of bFGF-mediated vasoreactivity in corporal tissue. Xie D, Findley CM, Greenfield JM, Pippen AM, Kontos CD, Donatucci CF, and Annex BH. A VEGF trap inhibits the beneficial effect of bFGF on vasoreactivity in corporal tissues of hypercholesterolemic rabbits. J Sex Med 2008;5:2069,2078. [source] Expression and functional role of adenosine receptors in regulating inflammatory responses in human synoviocytesBRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2010K Varani Background and purpose:, Adenosine is an endogenous modulator, interacting with four G-protein coupled receptors (A1, A2A, A2B and A3) and acts as a potent inhibitor of inflammatory processes in several tissues. So far, the functional effects modulated by adenosine receptors on human synoviocytes have not been investigated in detail. We evaluated mRNA, the protein levels, the functional role of adenosine receptors and their pharmacological modulation in human synoviocytes. Experimental approach:, mRNA, Western blotting, saturation and competition binding experiments, cyclic AMP, p38 mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-,B activation, tumour necrosis factor , (TNF-,) and interleukin-8 (IL-8) release were assessed in human synoviocytes isolated from patients with osteoarthritis. Key results:, mRNA and protein for A1, A2A, A2B and A3 adenosine receptors are expressed in human synoviocytes. Standard adenosine agonists and antagonists showed affinity values in the nanomolar range and were coupled to stimulation or inhibition of adenylyl cyclase. Activation of A2A and A3 adenosine receptors inhibited p38 MAPK and NF-,B pathways, an effect abolished by selective adenosine antagonists. A2A and A3 receptor agonists decreased TNF-, and IL-8 production. The phosphoinositide 3-kinase or Gs pathways were involved in the functional responses of A3 or A2A adenosine receptors. Synoviocyte A1 and A2B adenosine receptors were not implicated in the inflammatory process whereas stimulation of A2A and A3 adenosine receptors was closely associated with a down-regulation of the inflammatory status. Conclusions and implications:, These results indicate that A2A and A3 adenosine receptors may represent a potential target in therapeutic modulation of joint inflammation. [source] Obovatol attenuates microglia-mediated neuroinflammation by modulating redox regulationBRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2010Jiyeon Ock Background and purpose:, Obovatol isolated from the medicinal herb Magnolia obovata exhibits a variety of biological activities. Here, the effect of obovatol and its mechanism of action on microglial activation, neuroinflammation and neurodegeneration were investigated. Experimental approach:, In microglial BV-2 cells stimulated with lipopolysaccharide (LPS), we measured nitric oxide (NO) and cytokine production, and activation of intracellular signalling pathways by reverse transcription-polymerase chain reaction and Western blots. Cell death was assayed in co-cultures of activated microglia (with bacterial LPS) and neurons and in LPS-induced neuroinflammation in mice in vivo. Key results:, Obovatol inhibited microglial NO production with an IC50 value of 10 µM. Obovatol also inhibited microglial expression of proinflammatory cytokines and inducible nitric-oxide synthase, which was accompanied by the inhibition of multiple signalling pathways such as nuclear factor kappa B, signal transducers and activators of transcription 1, and mitogen-activated protein kinases. In addition, obovatol protected cultured neurons from microglial toxicity and inhibited neuroinflammation in mice in vivo. One molecular target of obovatol in microglia was peroxiredoxin 2 (Prx2), identified by affinity chromatography and mass spectrometry. Obovatol enhanced the reactive oxygen species (ROS)-scavenging activity of Prx2 in vitro, thereby suppressing proinflammatory signalling pathways of microglia where ROS plays an important role. Conclusions and implications:, Obovatol is not only a useful chemical tool that can be used to investigate microglial signalling, but also a promising drug candidate against neuroinflammatory diseases. Furthermore, our results indicate that Prx2 is a novel drug target that can be exploited for the therapeutic modulation of neuroinflammatory signalling. [source] Mammalian Toll-like receptors: to immunity and beyondCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2005P. A. Hopkins Summary Toll-like receptors (TLRs) constitute an archetypal pattern recognition system. Their sophisticated biology underpins the ability of innate immunity to discriminate between highly diverse microbial pathogens and self. However, the remarkable progress made in describing this biology has also revealed new immunological systems and processes previously hidden to investigators. In particular, TLRs appear to have a fundamental role in the generation of clonal adaptive immune responses, non-infectious disease pathogenesis and even in the maintenance of normal mammalian homeostasis. Although an understanding of TLRs has answered some fundamental questions at the host,pathogen interface, further issues, particularly regarding therapeutic modulation of these receptors, have yet to be resolved. [source] |