Home About us Contact | |||
Therapeutic Concepts (therapeutic + concept)
Selected AbstractsTherapeutic concepts in clinical dermatology: cyclosporine A in immunomediated and other dermatosesINTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 9 2001Giovanni Luigi Capella MD First page of article [source] Targeting of cell survival genes using small interfering RNAs (siRNAs) enhances radiosensitivity of Grade II chondrosarcoma cellsJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2007Dae Won Kim Abstract The main treatment for chondrosarcoma is surgical resection with a wide margin. However, there are certain chondrosarcomas, such as those found in the pelvis and the spine, which cannot be resected adequately with surgery alone. Unfortunately, most chondrosarcomas are resistant to radiation and chemotherapy. Radiation and chemotherapy are thought to kill chondrosarcoma cells by inducing apoptosis, or programmed cell death. In this article, we hypothesize that antiapoptotic gene silencing enhances radiosensitivity in chondrosarcoma cells by facilitating apoptotic pathways. We knocked down antiapoptotic genes in chondrosarcoma cells using small interfering RNAs (siRNAs). Two well-established Grade II human chondrosarcoma cell lines were pretreated with siRNAs that specifically target mRNAs for Bcl-2, Bcl-xL, or XIAP. The cells were then treated with radiation. Cell death was assessed by flow cytometry. Cell survival and proliferation were measured by clonogenic survival assays. Chondrosarcoma cells exhibited radioresistance and increased the expression of Bcl-2, Bcl-xL, and XIAP in response to radiation. When one of the Bcl-2, Bcl-xL, or XIAP genes was silenced with the corresponding siRNA, radiosensitivity increased up to 9.2-fold (p,<,0.05). When two out of the three antiapoptotic mRNAs were knocked down simultaneously, there was an 11.3-fold increase in cell death after radiation (p,<,0.05). Our findings support a novel therapeutic concept that gene silencing may be used as a molecular adjuvant therapy for radioresistant sarcomas. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25: 820,828, 2007 [source] Intratumoral cancer chemotherapy and immunotherapy: opportunities for nonsystemic preoperative drug deliveryJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 2 2002Eugene P. Goldberg The recent literature documents the growing interest in local intratumoral chemotherapy as well as systemic preoperative chemotherapy with evidence for improved outcomes using these therapeutic modalities. Nevertheless, with few exceptions, the conventional wisdom and standard of care for clinical and surgical oncology remains surgery followed by radiation and/or systemic chemotherapy, as deemed appropriate based on clinical findings. This, in spite of the fact that the toxicity of conventional systemic chemotherapy and immunotherapy affords limited effectiveness and frequently compromises the quality of life for patients. Indeed, with systemic chemotherapy, the oncologist (and the patient) often walks a fine line between attempting tumour remission with prolonged survival and damaging the patient's vital functions to the point of death. In this context, it has probably been obvious for more than 100 years, due in part to the pioneering work of Ehrlich (1878), that targeted or localized drug delivery should be a major goal of chemotherapy. However, there is still only limited clinical use of nonsystemic intratumoral chemotherapy for even those high mortality cancers which are characterized by well defined primary lesions i.e. breast, colorectal, lung, prostate, and skin. There has been a proliferation of intratumoral chemotherapy and immunotherapy research during the past two to three years. It is therefore the objective of this review to focus much more attention upon intratumoral therapeutic concepts which could limit adverse systemic events and which might combine clinically feasible methods for localized preoperative chemotherapy and/or immunotherapy with surgery. Since our review of intratumoral chemo-immunotherapy almost 20 years ago (McLaughlin & Goldberg 1983), there have been few comprehensive reviews of this field; only one of broad scope (Brincker 1993), three devoted specifically to gliomas (Tomita 1991; Walter et al. 1995; Haroun & Brem 2000), one on hepatomas (Venook 2000), one concerning veterinary applications (Theon 1998), and one older review of dermatological applications (Goette 1981). However, none have shed light on practical opportunities for combining intratumoral therapy with subsequent surgical resection. Given the state-of-the-art in clinical and surgical oncology, and the advances that have been made in intratumoral drug delivery, minimally invasive tumour access i.e. fine needle biopsy, new drugs and drug delivery systems, and preoperative chemotherapy, it is timely to present a review of studies which may suggest future opportunities for safer, more effective, and clinically practical non-systemic therapy. [source] Susceptibility genes in movement disordersMOVEMENT DISORDERS, Issue 7 2008Sonja Scholz MD Abstract During the last years, remarkable progress in our understanding of molecular genetic mechanisms underlying movement disorders has been achieved. The successes of linkage studies, followed by positional cloning, have dominated the last decade and several genes underlying monogenic disorders have been discovered. The pathobiological understanding garnered from these mutations has laid the foundation for much of the search for genetic loci that confer risk for, rather than cause, disease. With the introduction of whole genome association studies as a novel tool to investigate genetic variation underlying common, complex diseases, a new era in neurogenomics has just begun. As the field rapidly moves forward several new challenges and critical questions in clinical care have to be addressed. In this review, we summarize recent advances in the discovery of susceptibility loci underlying major movement disorders, explain the newest methodologies and tools employed for finding and characterizing genes and discuss how insights into the molecular genetic basis of neurological disorders will impact therapeutic concepts in patient care. © 2008 Movement Disorder Society [source] The Enteric Nervous System III: A Target for Pharmacological TreatmentBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 1 2003Mark Berner Hansen Indeed, the enteric nervous system has become a promising target in the treatment of many gastrointestinal symptoms and disorders. Some of these new therapeutic concepts, such as botulinum toxin for achalasia and serotonergic drugs for functional bowel diseases, are already in clinical use. This paper is part 3 of three Minireviews in Pharmacology & Toxicology, and presents the neurogastrointestinal pharmacological therapeutic options in gastrointestinal pain, functional gastrointestinal disorders, inflammatory bowel diseases, cancer and related conditions with focus on future drug targets. The diagnosis of gastrointestinal neuropathy, the role of serotonin and related neuroendocrine transmitters, serotonergic drugs, and neurotrophic factors in neurogastrointestinal pharmacology will be addressed in this context. [source] |