Home About us Contact | |||
Thematic Maps (thematic + map)
Selected AbstractsA new synthetic index and a protocol for monitoring the status of Posidonia oceanica meadows: a case study at Sanremo (Ligurian Sea, NW Mediterranean)AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 1 2006Monica Montefalcone Abstract 1.The status of a Posidonia oceanica meadow in front of the town of Sanremo, Italy, was studied through a combined use of benthic mapping and synthetic indices. 2.Mapping was accomplished by integrating side scan sonar imagery and data collected by scuba diving along transects placed perpendicularly to the coastline. A thematic map (scale 1:5000) was produced. Extent of the meadow, occurrence of dead matte areas, and morphology of the lower limit (with new definition) are all described. 3.Two synthetic environmental indices were applied to transect data in order to quantify the status of the meadow: the Conservation Index and the Substitution Index. The former is related to the proportion of dead matte; the latter is a novel index measuring the amount of replacement of the ,constructional' seagrass P. oceanica by the ,non-constructional' seagrass Cymodocea nodosa. The potential of a ,phase shift' in Ligurian Sea seagrass meadows is discussed. 4.The approach here proposed, based on detailed mapping plus synthetic indices, may provide immediate information to evaluate the state of Mediterranean Posidonia oceanica for monitoring and management. Copyright © 2006 John Wiley & Sons, Ltd. [source] Spatial analysis of dental trauma in 12-year-old schoolchildren in Curitiba, BrazilDENTAL TRAUMATOLOGY, Issue 4 2008Simone Tetu Moysés A geographic information system (GIS) was used, built by means of ArcView GIS 3.2 software and geographical databases of streets and districts defined within the boundaries of the city of Curitiba, provided by Curitiba's Institute of Research and Public Planning (IPPUC). The database used in the study was compiled based on an epidemiological survey undertaken in 1998 on a sample of 2126 schoolchildren 12 years old, residing in outlying urban suburbs distributed over 29 micro-areas in the city of Curitiba. The cases selected for this study were those with a history of dental trauma, thereby comprising a subsample of 327 schoolchildren. The spatial location of the schoolchildren's homes enabled the events to be visualized on a cartographic basis. The variables of gender, aetiology of the trauma and areas of substandard living conditions were included in the analysis and construction of thematic maps, thus making possible a descriptive analysis of the spatial distribution of dental trauma in the city. Intra-urban differentials were identified in the prevalence of dental trauma in 12-year-old schoolchildren in Curitiba. A greater concentration of occurrences was observed in the eastern region of the city, especially in areas of substandard living conditions. It was possible to conclude that socio-environmental and geophysical factors are associated with the determination of dental trauma in the city of Curitiba, pointing to the need for the development of public policies especially aimed at areas and populations at greater risk. [source] Rapid plant diversity assessment using a pixel nested plot design: A case study in Beaver Meadows, Rocky Mountain National Park, Colorado, USADIVERSITY AND DISTRIBUTIONS, Issue 4 2007Mohammed A. Kalkhan ABSTRACT Geospatial statistical modelling and thematic maps have recently emerged as effective tools for the management of natural areas at the landscape scale. Traditional methods for the collection of field data pertaining to questions of landscape were developed without consideration for the parameters of these applications. We introduce an alternative field sampling design based on smaller unbiased random plot and subplot locations called the pixel nested plot (PNP). We demonstrate the applicability of the PNP design of 15 m × 15 m to assess patterns of plant diversity and species richness across the landscape at Rocky Mountain National Park (RMNP), Colorado, USA in a time (cost)-efficient manner for field data collection. Our results produced comparable results to a previous study in the Beaver Meadow study (BMS) area within RMNP, where there was a demonstrated focus of plant diversity. Our study used the smaller PNP sampling design for field data collection which could be linked to geospatial information data and could be used for landscape-scale analyses and assessment applications. In 2003, we established 61 PNP in the eastern region of RMNP. We present a comparison between this approach using a sub-sample of 19 PNP from this data set and 20 of Modified Whittaker nested plots (MWNP) of 20 m × 50 m that were collected in the BMS area. The PNP captured 266 unique plant species while the MWNP captured 275 unique species. Based on a comparison of PNP and MWNP in the Beaver Meadows area, RMNP, the PNP required less time and area sampled to achieve a similar number of species sampled. Using the PNP approach for data collection can facilitate the ecological monitoring of these vulnerable areas at the landscape scale in a time- and therefore cost-effective manner. [source] Soil erosion assessment using geomorphological remote sensing techniques: an example from southern ItalyEARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2010Sergio Lo Curzio Abstract The aim of this study is to assess of the distribution and map the geomorphological effects of soil erosion at the basin scale identifying newly-formed erosional landsurfaces (NeFELs), by means of an integration of Landsat ETM 7+ remotely sensed data and field-surveyed geomorphological data. The study was performed on a 228·6,km2 -wide area, located in southern Italy. The study area was first characterized from a lithological, pedological, land-use and morpho-topographic point of view and thematic maps were created. Then, the georeferenced Landsat ETM 7+ satellite imagery was processed using the RSI ENVI 4.0 software. The processing consisted of contrast stretching, principal component analysis (PCA), decorrelation stretching and RGB false colour compositing. A field survey was conducted to characterize the features detected on the imagery. Particular attention was given to the NeFELs, which were located using a global positioning system (GPS). We then delimited the Regions of Interest (ROI) on the Landsat ETM 7+ imagery, i.e. polygons representing the ,ground-truth', discriminating the NeFELs from the other features occurring in the imagery. A simple statistical analysis was conducted on the digital number (DN) values of the pixels enclosed in the ROI of the NeFELs, with the aim to determine the spectral response pattern of such landsurfaces. The NeFELs were then classified in the entire image using a maximum likelihood classification algorithm. The results of the classification process were checked in the field. Finally, a spatial analysis was performed by converting the detected landsurfaces into vectorial format and importing them into the ESRI ArcViewGIS 9.0 software. Application of these procedures, together with the results of the field survey, highlighted that some ,objects' in the classified imagery, even if displaying the same spectral response of NeFELs, were not landsurfaces subject to intense soil erosion, thus confirming the strategic importance of the field-checking for the automatically produced data. During the production of the map of the NeFELs, which is the final result of the study, these ,objects' were eliminated by means of simple, geomorphologically-coherent intersection procedures in a geographic information system (GIS) environment. The overall surface of the NeFELs had an area of 22·9,km2, which was 10% of the total. The spatial analysis showed that the highest frequency of the NeFELs occurred on both south-facing and southwest-facing slopes, cut on clayey-marly deposits, on which fine-textured and carbonate-rich Inceptisols were present and displaying slope angle values ranging from 12° to 20°. The comparison of two satellite imageries of different periods highlighted that the NeFELs were most clearly evident immediately after summer tillage operations and not so evident before them, suggesting that these practices could have played an important role in inducing the erosional processes. Copyright © 2009 John Wiley & Sons, Ltd. [source] The riverscape of Western Amazonia , a quantitative approach to the fluvial biogeography of the regionJOURNAL OF BIOGEOGRAPHY, Issue 8 2007Tuuli Toivonen Abstract Aim, To provide a quantitative spatial analysis of the riverscape (open-water bodies and their surrounding areas) of the Western Amazonian lowlands using a consistent surface of remotely sensed imagery. Taking into account the essential significance of fluvial environments for the Amazonian biota, we propose that an enhanced understanding of the Amazonian riverscape will provide new insight for biogeographical studies in the region and contribute to the understanding of these megadiverse tropical lowlands. Location, An area of 2.2 million km2 covering the Western Amazonian lowlands of the Andean foreland region, i.e. the upper reaches of the Amazon river system. Areas in Colombia, Venezuela, Ecuador, Peru, Brazil and Bolivia between longitudes 83 °W and 65 °W and latitudes 5 °N and 12 °S are included. Methods, A mosaic of 120 Landsat TM satellite images was created with 100-m resolution, and water areas of over 1 ha in size or c. 60 m in width were extracted using a simple ratio threshold applicable to a large set of data. With this method, 99.1% of the water areas present in 30-m imagery were mapped with images with 100-m resolution. Water pixels of distinct river segments were assigned to river classes on the basis of their channel properties, and islands and lakes were distinguished separately and classified. Measures of water patterns such as structure, composition, richness and remoteness were provided for various spatial units. Riverine corridors were computed from the open-water mask by outer limits of active channels and floodplain lakes. Analytical results are shown as both thematic maps and statistics. Results, A total of 1.1% of Western Amazonia is covered by open-water bodies over 1 ha in size or 60 m in width. River-bound waters comprise 98% of the total water surface. Whilst isolated lakes are scarce, river-bound oxbow and backchannel lakes are plentiful, comprising 17.5% of all waters. They are particularly frequent along meandering channels, which dominate both in area and length. The riverine corridors including active channels and floodplain lakes cover 17% of the land area. The average distance from any point of land to the nearest water is 12 km. Geographically speaking, the distribution of waters is uneven across the region, and the detailed characteristics of the riverscape are geographically highly variable. Three major, fluvially distinct regions can be identified: central Western Amazonia, the south, and the north-east. The proportional surface areas of the riverine corridors, numbers of lakes, sizes of islands and their distributions depend largely on the types and sizes of the rivers. Main conclusions, Our results support the notion of Western Amazonia as a dynamic, highly fluvial environment, highlighting and quantifying considerable internal variation within the region in terms of fluvial patterns and the processes that they reflect and control. Biogeographically, the variety of types of fluvial environments and their characteristics are important constituents of what influences the distribution of species and dynamics of terrestrial habitats. Spatially consistent riverscape data can serve as a consistent and scalable source of relevant information for other biogeographical approaches in the region. [source] Quantitative comparison of the diversity of landscapes with actual vs. potential natural vegetationAPPLIED VEGETATION SCIENCE, Issue 2 2000Carlo Ricotta Abstract. In the past 20 years, several metrics have been developed to quantify various aspects of landscape structure and diversity in space and time, and most have been tested on grid-based thematic maps. Once landscape patterns have been quantified, their effects on ecological functions can be explained if the expected pattern in the absence of specific processes is known. This type of expected pattern has been termed a neutral landscape model. In the landscape-ecological literature, researchers traditionally adopt random and fractal computer-generated neutral landscape models to verify the expected relationship between a given ecological process and landscape spatial heterogeneity. Conversely, little attention has been devoted to distribution patterns of potential natural vegetation (PNV) as an ecological baseline for the evaluation of pattern-process interactions at the landscape scale. As an application for demonstration, we propose a neutral model based on PNV as a possible reference for a quantitative comparison with actual vegetation (AC V) distribution. Within this context, we introduce an evenness-like index termed ,actual-to-potential entropy ratio' (HA/P = HACV/HPNV, where H is Shannon's entropy). Results show that, despite the hypothetical character of most PNV maps, the use of PNV distribution as a baseline for a quantitative comparison with ACV distribution may represent a first step towards a general model for the evaluation of the effects of disturbance on vegetation patterns and diversity. [source] |