Thymus Vulgaris (thymus + vulgari)

Distribution by Scientific Domains

Terms modified by Thymus Vulgaris

  • thymus vulgari l.

  • Selected Abstracts


    Beyond six scents: defining a seventh Thymus vulgaris chemotype new to southern France by ethanol extraction

    FLAVOUR AND FRAGRANCE JOURNAL, Issue 3 2009
    Ken Keefover-Ring
    Abstract The concept of plant chemotype has long been useful to describe secondary chemical phenotypes; however, the idea has practical limitations, especially when applied to ecological questions. This work reports the discovery of a new 1,8-cineole chemotype of Thymus vulgaris from a well-studied area in southern France. Multivariate statistical analysis of ethanol-extracted plant terpenes was used to describe this new chemotype and three others found at the site, and the results are used to discuss the chemotype concept. While the total amount of essential oils among these chemotypes showed no difference, the concentration of the main terpene differed significantly, with the 1,8-cineole and cis -sabinene hydrate chemotypes having the lowest amounts of their respective main components, and the linalool chemotype having the highest. The , -terpinyl acetate chemotype had intermediate levels of its main terpene. A factor analysis revealed four factors which explained almost 89% of the total variation in plant essential oils. Each factor represented a separate chemotype, including a cis -sabinene hydrate, linalool, ,- terpinyl acetate and the new 1,8-cineole chemotype. Although the concept of plant chemotype is still valid, better definitions are important when evaluating the influences of a plant's secondary chemistry on other community members. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    In-vitro anti-inflammatory effect of Eucalyptus globulus and Thymus vulgaris: nitric oxide inhibition in J774A.1 murine macrophages

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 2 2004
    E. Vigo
    ABSTRACT It is well known that nitric oxide (NO) plays an important role in the pathogenesis of inflammatory diseases. Eucalyptus globulus Labill. and Thymus vulgaris L. have been used in traditional medicine in the treatment of bronchitis, asthma and other respiratory diseases. The present study focuses on the effects of these two extracts on NO production induced by lipopolysaccharide (LPS) and interferon-, (IFN-,) in the murine macrophage cell line J774A.1. In addition, cell viability, scavenging activity and inducible nitric oxide synthase (iNOS) mRNA expression were evaluated. E. globulus and T. vulgaris extracts significantly inhibited the enhanced production of NO induced by LPS and IFN-, in a dose-dependent manner. Treatment with these two extracts did not reduce cell viability at any dose used. Both plant extracts showed significant scavenging of NO radicals released by an NO donor, PAPANONOate. Results also show that pre-treatment with E. globulus and T. vulgaris extracts significantly inhibits iNOS mRNA expression. This study thus suggests that the inhibition of net NO production by these two extracts may be due to their NO scavenging activity and/or their inhibitory effects on iNOS gene expression. [source]


    Antifungal activity of Thymus oils and their major compounds

    JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY & VENEREOLOGY, Issue 1 2004
    C Pina-Vaz
    ABSTRACT The increasing recognition and importance of fungal infections, the difficulties encountered in their treatment and the increase in resistance to antifungals have stimulated the search for therapeutic alternatives. Essential oils have been used empirically. The essential oils of Thymus (Thymus vulgaris, T. zygis subspecies zygis and T. mastichina subspecies mastichina) have often been used in folk medicine. The aim of the present study was to evaluate objectively the antifungal activity of Thymus oils according to classical bacteriological methodologies , determination of the minimal inhibitory concentration (MIC) and the minimal lethal concentration (MLC) , as well as flow cytometric evaluation. The effect of essential oils upon germ tube formation, an important virulence factor, was also studied. The mechanism of action was studied by flow cytometry, after staining with propidium iodide. The chemical composition of the essential oils was investigated by gas chromatography (GC) and gas chromatography/mass spectroscopy (GC/MS). The antifungal activity of the major components (carvacrol, thymol, p -cymene and 1,8-cineole) and also possible interactions between them were also investigated. The essential oils of T. vulgaris and T. zygis showed similar antifungal activity, which was greater than T. mastichina. MIC and MLC values were similar for all the compounds tested. At MIC values of the essential oils, propidium iodide rapidly penetrated the majority of the yeast cells, indicating that the fungicidal effect resulted primarily from an extensive lesion of the cell membrane. Concentrations below the MIC values significantly inhibited germ tube formation. This study describes the potent antifungal activity of the essential oils of Thymus on Candida spp., warranting future therapeutical trials on mucocutaneous candidosis. [source]


    Antimicrobial activity of five essential oils against origin strains of the Enterobacteriaceae family,

    APMIS, Issue 1 2005
    PEDRO PEÑALVER
    An in vitro assay measuring the antimicrobial activity of essential oils of Coridothymus capitatus (Spanish origanum), Satureja montana, Thymus mastichina (Spanish Origanum majorana), Thymus zygis (Spanish variety of Thymus vulgaris) and Origanum vulgare has been carried out against poultry origin strains of Escherichia coli, Salmonella enteritidis and Salmonella essen, and pig origin strains of enterotoxigenic E. coli (ETEC), Salmonella choleraesuis and Salmonella typhimurium. Using the broth microdilution method, all the essential oils showed an MIC , 2% (v/v) for the two strains of E. coli. The essential oil that showed the highest antimicrobial activity against the four strains of Salmonella was Origanum vulgare (MIC , 1% v/v), followed by Thymus zygis (MIC ,2% v/v). Thymus mastichina inhibited all the microorganisms at the highest concentration, 4% (v/v), while the rest of the essential oils showed highly variable results. By chemotyping, higher inhibitory capacity was observed in the oils with a higher percentage of phenolic components (carvacrol and thymol) in comparison with oils containing the monoterpenic alcohol linalool. The results of this work confirm the antimicrobial activity of some essential oils, as well as their potential application in the treatment and prevention of poultry and pig diseases caused by salmonella. [source]