Thymine Dimers (thymine + dimer)

Distribution by Scientific Domains


Selected Abstracts


Efficient Photosensitized Splitting of Thymine Dimer by a Covalently Linked Tryptophan in Solvents of High Polarity

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 6 2005
Qin-Hua Song
Abstract Tryptophan-thymine dimer model compounds used to mimic the repair reaction of DNA photolyase have been synthesized. The photosensitized cleavage of the dimer by the covalently linked tryptophan is strongly solvent-dependent with the reaction rates increasing in increasingly polar solvents, for example, the quantum yield , = 0.004 in THF/hexane (5:95) and 0.093 in water. The fluorescence of the tryptophan residue is quenched by the dimer moiety by electron transfer from the excited tryptophan to the dimer. Fluorescence-quenching studies indicated that the electron transfer was efficient in polar solvents. The splitting efficiency of the dimer radical anion within the tryptophan·+,dimer·, species is also remarkably solvent-dependent and increases with the polarity of the solvents. The back-electron-transfer reaction in the charge-separated species, which competes with cleavage, was suppressed in polar solvents. These results are in contrast to those of earlier solvent-dependent studies of indole-dimer systems, but they can be rationalized in terms of the differences in the distances between the chromophore unit and the attached dimer. The pH-dependent measurements of the splitting reaction and the deuterium isotope effect showed that the tryptophan radical cation within the charge-separated species does not deprotonate prior to the cleavage of the dimer radical anion. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


Ring Opening of the Cyclobutane in a Thymine Dimer Radical Anion

CHEMISTRY - A EUROPEAN JOURNAL, Issue 32 2007
Chryssostomos Chatgilialoglu Dr.
Abstract The reactions of hydrated electrons (eaq,) with thymine dimer 2 and thymidine have been investigated by radiolytic methods coupled with product studies, and addressed computationally by means of BB1K-HMDFT calculations. Pulse radiolysis revealed that one-electron reduction of the thymine dimer 2 affords the radical anion of thymidine (5) with t1/2<35,ns. Indeed, the theoretical study suggests that radical anion 3, in which the spin density and charge distribution are located in both thymine rings, undergoes a fast partially ionic splitting of the cyclobutane with a half-life of a few ps. This model fits with the in vivo observation of thymine dimer repair in DNA by photolyase. ,-Radiolysis of thymine dimer 2 demonstrates that the one-electron reduction and the subsequent cleavage of the cyclobutane ring does not proceed by means of a radical chain mechanism, that is, in this model reaction the T,. is unable to transfer an electron to the thymine dimer 2. [source]


A model for targeted substitution mutagenesis during SOS replication of double-stranded DNA containing cis-syn cyclobutane thymine dimers

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 9 2006
Helen A. Grebneva
Abstract A model for ultraviolet mutagenesis is described that is based on the formation of rare tautomeric bases in pyrimidine dimers. It is shown that during SOS synthesis the modified DNA-polymerase inserts canonical bases opposite the dimers; the inserted bases are capable of forming hydrogen bonds with bases in the template DNA. SOS-replication of double-stranded DNA having thymine dimers, with one or both bases in a rare tautomeric conformation, results in targeted transitions, transversions, or one-nucleotide gaps. Structural analysis indicates that one type of dimer containing a single tautomeric base (TT1*, with the "*" indicating a rare tautomeric base and the subscript referring to the particular conformation) can cause A:T , G:C transition or homologous A:T , T:A transversion, while another dimer (TT2*) can cause a one-nucleotide gap. The dimers containing T4* result in A:T , C:G transversion, while TT5* dimers can cause A:T , C:G transversion or homologous A:T , T:A transversion. If both bases in the dimer are in a rare tautomeric form, then tandem mutations or double-nucleotide gaps can be formed. The dimers containing the rare tautomeric forms T1 *,, T2*,, T3*,, T4*,, and T5*, may not result in mutations. The question of whether dimers containing T4*, and T5*, result in mutations requires further investigation. Environ. Mol. Mutagen., 2006. © 2006 Wiley-Liss, Inc. [source]


DNA binding properties of human DNA polymerase ,: implications for fidelity and polymerase switching of translesion synthesis

GENES TO CELLS, Issue 12 2004
Rika Kusumoto
The human XPV (xeroderma pigmentosum variant) gene is responsible for the cancer,prone xeroderma pigmentosum syndrome and encodes DNA polymerase , (pol ,), which catalyses efficient translesion synthesis past cis -syn cyclobutane thymine dimers (TT dimers) and other lesions. The fidelity of DNA synthesis by pol , on undamaged templates is extremely low, suggesting that pol , activity must be restricted to damaged sites on DNA. Little is known, however, about how the activity of pol , is targeted and restricted to damaged DNA. Here we show that pol , binds template/primer DNAs regardless of the presence of TT dimers. Rather, enhanced binding to template/primer DNAs containing TT dimers is only observed when the 3,-end of the primer is an adenosine residue situated opposite the lesion. When two nucleotides have been incorporated into the primer beyond the TT dimer position, the pol ,-template/primer DNA complex is destabilized, allowing DNA synthesis by DNA polymerases , or , to resume. Our study provides mechanistic explanations for polymerase switching at TT dimer sites. [source]


Optimization of DNA Extraction from a Scleractinian Coral for the Detection of Thymine Dimers by Immunoassay,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007
Anastazia T. Banaszak
ABSTRACT Ultraviolet (UV)-B is known to cause DNA damage, principally by the formation of thymine dimers, but little research has been conducted in coral reef environments where UV doses are high. The majority of tropical reef-dwelling corals form a mutualistic symbiosis with the dinoflagellate Symbiodinium but few studies have been conducted on in situ DNA damage in corals and none have investigated the symbiotic components separately. The aim of this research was to quantify DNA damage in both the coral host and the dinoflagellate symbiont. The first step in this investigation was to optimize the extraction of DNA from the host, Porites astreoides, as well as the symbiont. The optimization was divided into a series of steps: the preservation of the samples, separation of the coral tissue from the skeleton, separation of the host tissue from the algal cells to prevent cross contamination as well as the extraction and purification of genomic DNA from the algae that are located intracellularly within the invertebrate animal tissue. The best preservation method was freezing at low temperatures without ethanol. After scraping with a razor blade, the coral tissue can be divided into host and algal components and the DNA extracted using modifications of published techniques yielding DNA suitable for the quantification of thymine dimer formation using antibodies. Preliminary data suggest that in P. astreoides collected from 1 m depth, thymine dimers form approximately 2.8 times more frequently in the host DNA than in the DNA of its symbionts. [source]


Radiofrequency exposure and mammalian cell toxicity, genotoxicity, and transformation

BIOELECTROMAGNETICS, Issue S6 2003
Martin L. Meltz
Abstract The published in vitro literature relevant to the issue of the possible induction of toxicity, genotoxicity, and transformation of mammalian cells due to radiofrequency field (RF) exposure is examined. In some instances, information about related in vivo studies is presented. The review is from the perspective of technical merit and also biological consistency, especially with regard to those publications reporting a positive effect. The weight of evidence available indicates that, for a variety of frequencies and modulations with both short and long exposure times, at exposure levels that do not (or in some instances do) heat the biological sample such that there is a measurable increase in temperature, RF exposure does not induce (a) DNA strand breaks, (b) chromosome aberrations, (c) sister chromatid exchanges (SCEs), (d) DNA repair synthesis, (e) phenotypic mutation, or (f) transformation (cancer-like changes). While there is limited experimental evidence that RF exposure induces micronuclei formation, there is abundant evidence that it does not. There is some evidence that RF exposure does not induce DNA excision repair, suggesting the absence of base damage. There is also evidence that RF exposure does not inhibit excision repair after the induction of thymine dimers by UV exposure, as well as evidence that indicates that RF is not a co-carcinogen or a tumor promoter. The article is in part a tutorial, so that the reader can consider similarities and discrepancies between reports of RF-induced effects relative to one another. Bioelectromagnetics Supplement 6:S196,S213, 2003. © 2003 Wiley-Liss, Inc. [source]


Effect of ultraviolet (UV) A, UVB or ionizing radiation on the cell cycle of human melanoma cells

BRITISH JOURNAL OF DERMATOLOGY, Issue 5 2007
M. Placzek
Summary Background, One important component of the cellular response to irradiation is the activation of cell cycle checkpoints. It is known that both ultraviolet (UV) radiation and ionizing radiation (IR) can activate checkpoints at transitions from G1 to S phase, from G2 phase to mitosis and during DNA replication. Objectives, To evaluate the effects of irradiation with different wavelengths on cell cycle alterations. Methods, p53-deficient IPC-298 melanoma cells were irradiated with 10 J cm,2 UVA, 40 mJ cm,2 UVB, or with 7·5 Gy IR. Cell cycle effects were then determined by DNA/5-bromodeoxyuridine dual-parameter flow cytometry. Results, IPC-298 cells irradiated in G1 with UVA were not arrested at the G1/S transition, but at the G2/M transition. Despite p53 deficiency, the cells showed a G1 arrest after UVB exposure. Furthermore, IR did not affect G1 or S phase, but induced G2 phase arrest. Hence, the effects of UVA, but not of UVB, on the cell cycle in p53-deficient melanoma cells are comparable with those of IR. Conclusions, UVA and IR induce radical-mediated strand breaks and DNA lesions, and UVB essentially induces thymine dimers that lead to excision repair-related strand breaks. Different cell cycle effects may be a consequence of different types of DNA damage. The results showed that UVB-irradiated p53-deficient cells are arrested in G1. Irradiation with the solar radiation component UVB can therefore result in a beneficial retardation of tumour promotion in human skin carrying p53-mutated cell clones. [source]