Home About us Contact | |||
Thalamic Neurons (thalamic + neuron)
Selected AbstractsThe Midline Thalamus: Alterations and a Potential Role in Limbic EpilepsyEPILEPSIA, Issue 8 2001Edward H. Bertram Summary: ,Purpose: In limbic or mesial temporal lobe epilepsy, much attention has been given to specific regions or cell populations (e.g., the hippocampus or dentate granule cells). Epileptic seizures may involve broader changes in neural circuits, and evidence suggests that subcortical regions may play a role. In this study we examined the midline thalamic regions for involvement in limbic seizures, changes in anatomy and physiology, and the potential role for this region in limbic seizures and epilepsy Methods: Using two rat models for limbic epilepsy (hippocampal kindled and chronic spontaneous limbic epilepsy) we examined the midline thalamus for evidence of involvement in seizure activity, alterations in structure, changes in the basic in vitro physiology of the thalamic neurons. We also explored how this region may influence limbic seizures. Results: The midline thalamus was consistently involved with seizure activity from the onset, and there was significant neuronal loss in the medial dorsal and reuniens/rhomboid nuclei. In addition, thalamic neurons had changes in synaptically mediated and voltage-gated responses. Infusion of lidocaine into the midline thalamus significantly shortened afterdischarge duration. Conclusions: These observations suggest that this thalamic region is part of the neural circuitry of limbic epilepsy and may play a significant role in seizure modulation. Local neuronal changes can enhance the excitability of the thalamolimbic circuits. [source] Selective GABAergic innervation of thalamic nuclei from zona incertaEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2002P. Barthó Abstract Thalamocortical circuits that govern cortical rhythms and ultimately effect sensory transmission consist of three major interconnected elements: excitatory thalamocortical and corticothalamic neurons and GABAergic cells in the reticular thalamic nucleus. Based on the present results, a fourth component has to be added to this scheme. GABAergic fibres from an extrareticular diencephalic source were found to selectively innervate relay cells located mainly in higher-order thalamic nuclei. The origin of this pathway was localized to zona incerta (ZI), known to receive collaterals from corticothalamic fibres. First-order nuclei were innervated only in zones showing a high density of calbindin-positive neurons. The large GABA-immunoreactive incertal terminals established multiple contacts preferentially on the proximal dendrites of relay cells via symmetrical synapses with multiple release sites. The distribution, ultrastructural characteristics and postsynaptic target selection of extrareticular terminals were similar to type II muscarinic acetylcholine receptor-positive boutons, which constituted up to 49% of all GABAergic terminals in the posterior nucleus. This suggests that a significant proportion of the GABAergic input into certain thalamic territories involved in higher-order functions may have extrareticular origin. Unlike the reticular nucleus, ZI receives peripheral and layer V cortical input but no thalamic feedback; it projects to brainstem centres and has extensive intranuclear recurrent collaterals. This indicates that ZI exerts a conceptually new type of inhibitory control over the thalamus. The proximally situated, multiple active zones of ZI terminals indicate a powerful influence on the firing properties of thalamic neurons, which is conveyed to multiple cortical areas via relay cells which have widespread projections to neocortex. [source] Deafferentation-induced apoptosis of neurons in thalamic somatosensory nuclei of the newborn rat: critical period and rescue from cell death by peripherally applied neurotrophinsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2000Alfonso Baldi Abstract This study shows that unilateral transection of the infraorbital nerve (ION) in newborn (P0) rats induces apoptosis in the contralateral ventrobasal thalamic (VB) complex, as evidenced by terminal transferase-mediated deoxyuridine triphosphate-biotin nick end labelling (TUNEL) and electron miscroscopy. Double-labelling experiments using retrograde transport of labelled microspheres injected into the barrel cortex, followed by TUNEL staining, show that TUNEL-positive cells are thalamocortical neurons. The number of TUNEL-positive cells had begun to increase by 24 h postlesion, increased further 48 h after nerve section, and decreased to control levels after 120 h. Lesion-induced apoptosis in the VB complex is less pronounced if ION section is performed at P4, and disappears if the lesion is performed at P7. This time course closely matches the critical period of lesion-induced plasticity in the barrel cortex. Nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF), applied on the ION stump alone or in combination, are able to partially rescue thalamic neurons from apoptosis. Total cell counts in the VB complex of P7 animals that underwent ION section at P0 confirm the rescuing effect of BDNF and NGF. Blockade of axonal transport in the ION mimics the effect of ION section. These data suggest that survival-promoting signals from the periphery, maybe neurotrophins, are required for the survival of higher-order neurons in the somatosensory system during the period of fine-tuning of neuronal connections. We also propose that anterograde transneuronal degeneration in the neonatal rat trigeminal system may represent a new animal model for studying the pathways of programmed cell death in vivo. [source] Thalamic sensitization transforms localized pain into widespread allodyniaANNALS OF NEUROLOGY, Issue 1 2010Rami Burstein PhD Objective Focal somatic pain can evolve into widespread hypersensitivity to nonpainful and painful skin stimuli (allodynia and hyperalgesia, respectively). We hypothesized that transformation of headache into whole-body allodynia/hyperalgesia during a migraine attack is mediated by sensitization of thalamic neurons that process converging sensory impulses from the cranial meninges and extracephalic skin. Methods Extracephalic allodynia was assessed using single unit recording of thalamic trigeminovascular neurons in rats and contrast analysis of blood oxygenation level-dependent (BOLD) signals registered in functional magnetic resonance imaging (fMRI) scans of patients exhibiting extracephalic allodynia. Results Sensory neurons in the rat posterior thalamus that were activated and sensitized by chemical stimulation of the cranial dura exhibited long-lasting hyperexcitability to innocuous (brush, pressure) and noxious (pinch, heat) stimulation of the paws. Innocuous, extracephalic skin stimuli that did not produce neuronal firing at baseline (eg, brush) became as effective as noxious stimuli (eg, pinch) in eliciting large bouts of neuronal firing after sensitization was established. In migraine patients, fMRI assessment of BOLD signals showed that brush and heat stimulation at the skin of the dorsum of the hand produced larger BOLD responses in the posterior thalamus of subjects undergoing a migraine attack with extracephalic allodynia than the corresponding responses registered when the same patients were free of migraine and allodynia. Interpretation We propose that the spreading of multimodal allodynia and hyperalgesia beyond the locus of migraine headache is mediated by sensitized thalamic neurons that process nociceptive information from the cranial meninges together with sensory information from the skin of the scalp, face, body, and limbs. ANN NEUROL 2010 [source] |