Testing Apparatus (testing + apparatus)

Distribution by Scientific Domains


Selected Abstracts


Cohesive-driven particle circulation in the solids conveying zone of a single-screw extruder

ADVANCES IN POLYMER TECHNOLOGY, Issue 2 2008
Michael R. Thompson
Abstract Aspects of heat transfer within the solids conveying zone of a single-screw extruder were studied by using a specially constructed drum testing apparatus. Experiments were conducted with linear low-density polyethylene, polystyrene (PS), and polypropylene (PP) samples by examining their transient temperature profile while the heated drum was stationary or moving. In accordance with classic solids conveying theory, the granular beds of PP and PS remained as plugs while the drum rotated. In such cases, the dominant modes of heat transfer for these systems are conduction through the contact area of a particle and conduction through the interstitial gas. An exception to this behavior was found with PE, in which the bed temperature increased more rapidly while the drum rotated. Visual observations of the bed showed that the particles circulated in the presence of shear and that this complex flow pattern increased in velocity as the drum temperature approached the onset temperature for melting the PE material. With strong correlation between the rate of circulation and the temperature rise in the bed, the movement of particles was assumed to act in a convective heat transfer mode bringing about more uniform heating of the polymer. The circulation phenomenon was attributed to dominant adhesive forces at the particle,drum interface overcoming the cohesive strength of the bulk. © 2009 Wiley Periodicals, Inc. Adv Polym Techn 27:74,88, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20121 [source]


An In Vitro Investigation of a Comparison of Bond Strengths of Composite to Etched and Air-Abraded Human Enamel Surfaces

JOURNAL OF PROSTHODONTICS, Issue 1 2006
G.B. Gray BDS
Purpose: The purposes of the study were to measure the tensile bond strength of composite resin to human enamel specimens that had been either etched or air-abraded, and to compare the quality of the marginal seal, through the assessment of microleakage, of composite resin to human enamel specimens that had been either etched or air-abraded. Materials and Methods: Thirty mandibular molar teeth were decoronated and sectioned mesio-distally to produce six groups, each containing ten specimens that were embedded in acrylic resin using a jig. In each of the four treatment groups, the specimen surfaces were treated by either abrasion with 27 or 50 ,m alumina at 4 mm or 20 mm distance, and a composite resin was bonded to the treated surfaces in a standardized manner. In the two control groups the specimens were treated with 15 seconds exposure to 36% phosphoric acid gel and then similarly treated before being stored in sterile water for 1 week. All specimens were then subjected to tensile bond strength testing at either 1 or 5 mm/min crosshead speed. For the microleakage study, the degree of dye penetration was measured 32 times for each treatment group, using a neutral methylene blue dye at the interface between composite and either 27 or 50 ,m air-abraded tooth structure or etched enamel surfaces. Results: The mean bond strength values recorded for Group 1 (phosphoric acid etch, 5 mm/min crosshead speed) was 25.4 MPa; Group 2 (phosphoric acid etch, 1 mm/min), 22.2 MPa; Group 3 (27 ,m alumina at 4 mm distance), 16.8 MPa; Group 4 (50 ,m alumina at 4 mm distance), 16.9 MPa; Group 5 (27 ,m alumina at 20 mm distance), 4.2 MPa; and for Group 6 (50 ,m alumina at 20 mm distance) 3.4 MPa. An analysis of variance (ANOVA) demonstrated significant differences among the groups, and a multiple comparison test (Tukey) demonstrated that conventionally etched specimens had a greater bond strength than air-abraded specimen groups. No significant difference in dye penetration could be demonstrated among the groups (p= 0.58). Conclusions: Composite resin applied to enamel surfaces prepared using an acid etch procedure exhibited higher bond strengths than those prepared with air abrasion technology. The abrasion particle size did not affect the bond strength produced, but the latter was adversely affected by the distance of the air abrasion nozzle from the enamel surface. The crosshead speed of the bond testing apparatus had no effect on the bond strengths recorded. The marginal seal of composite to prepared enamel was unaffected by the method of enamel preparation. [source]


Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin

ARTHRITIS & RHEUMATISM, Issue 3 2009
Carl R. Flannery
Objective Lubricin, also referred to as superficial zone protein and PRG4, is a synovial glycoprotein that supplies a friction-resistant, antiadhesive coating to the surfaces of articular cartilage, thereby protecting against arthritis-associated tissue wear and degradation. This study was undertaken to generate and characterize a novel recombinant lubricin protein construct, LUB:1, and to evaluate its therapeutic efficacy following intraarticular delivery in a rat model of osteoarthritis (OA). Methods Binding and localization of LUB:1 to cartilage surfaces was assessed by immunohistochemistry. The cartilage-lubricating properties of LUB:1 were determined using a custom friction testing apparatus. A cell-binding assay was performed to quantify the ability of LUB:1 to prevent cell adhesion. Efficacy studies were conducted in a rat meniscal tear model of OA. One week after the surgical induction of OA, LUB:1 or phosphate buffered saline vehicle was administered by intraarticular injection for 4 weeks, with dosing intervals of either once per week or 3 times per week. OA pathology scores were determined by histologic analysis. Results LUB:1 was shown to bind effectively to cartilage surfaces, and facilitated both cartilage boundary lubrication and inhibition of synovial cell adhesion. Treatment of rat knee joints with LUB:1 resulted in significant disease-modifying, chondroprotective effects during the progression of OA, by markedly reducing cartilage degeneration and structural damage. Conclusion Our findings demonstrate the potential use of recombinant lubricin molecules in novel biotherapeutic approaches to the treatment of OA and associated cartilage abnormalities. [source]


Innovation zur Bestimmung der Erdstoff-Geokunststoff-Wechselwirkung , Pullout-, Scher- und Reibungsversuche

BAUTECHNIK, Issue 9 2004
Taner Aydogmus Dipl.-Ing.
Der Einsatz des ökonomischen und ökologischen Baumaterials "Geokunststoff" hat sich in den letzten Jahren in der Geotechnik für das Bauwesen, den Bergbau und den Umweltschutz stark verbreitet. In Form von Geotextilien, Geogittern, Geomembranen und verwandten Produkten ermöglichen sie technisch einfache, preisgünstige alternative Lösungsmöglichkeiten. Für die Berechnung der Standsicherheit von Konstruktionen mit Geokunststoffen, die für Bewehrungszwecke verwendet werden, ist die Ermittlung der "Reibungseigenschaften" in den Schichtgrenzen zwischen verschiedenen Geokunststoffen sowie zwischen Geokunststoffen und Erdstoffen unerläßlich. Zur Einschätzung der Hauptversagensmechanismen eines kunststoffbewehrten Erdkörpers werden üblicherweise Scher- und Reibungsversuche sowie nun auch verstärkt Pullout-Versuche durchgeführt. In diesem Beitrag wird ein neu entwickeltes und gebautes vollautomatisches Großrahmenschergerät mit integrierter Herausziehversuchseinrichtung vorgestellt, welches die Durchführung von vielfältigen innovativen Versuchen, mit leicht reproduzierbaren , den in-situ-Verhältnissen anpaßbaren , Randbedingungen, dem aktuellen Stand der Versuchstechnik entsprechend und nach den Vorgaben der neuen Normen (z. B. DIN 18137-3) ermöglicht. Innovation for the determination of the soil-geosynthetic interaction , pullout-, shear- and friction tests. The use of the economical and ecological construction material "geosynthetic" plays a rapidly increasing role in a variety of civil engineering, mining and environmental protection applications. Geosynthetics captured their own place as construction material due to their diversity and their specific characteristics. The applications of geosynthetics are many-sided. In the form of geotextiles, geogrids, geomembranes and related products, they make technically simple and low-priced alternative solution concepts possible. For the stability analysis of geosynthetic constructions knowledge of the friction behaviour in the geosynthetic interfaces is essential. For the assessment of the main failure mechanisms of a geosynthetic reinforced construction shear- and friction tests are usually performed as well as now also Pullout tests. In the following, a novel experimental apparatus for the examination of the interaction behaviour of soil-geosynthetic compound systems capable of performing both pullout and direct shear tests is described. In comparison with known geosynthetic testing practice, the novel testing apparatus offers the special advantage that a wide range of innovative shear and pullout test procedures can be carried out in the same device with negligible influence of test device configurations on friction test results. [source]


An in vitro study of non-axial forces upon the retention of an O-ring attachment

CLINICAL ORAL IMPLANTS RESEARCH, Issue 12 2009
Renata Cristina Silveira Rodrigues
Abstract: Objective: The purpose of this study was to evaluate the retention force of an O-ring attachment system in different inclinations to the ideal path of insertion, using devices to compensate angulations. Material and methods: Two implants were inserted into an aluminum base, and ball attachments were screwed to implants. Cylinders with O-rings were placed on ball attachments and connected to the test device using positioners to compensate implant angulations (0°, 7°, and 14°). Plexiglass bases were used to simulate implant angulations. The base and the test device were positioned in a testing apparatus, which simulated insertion/removal of an overdenture. A total of 2900 cycles, simulating 2 years of overdenture use, were performed and 36 O-rings were tested. The force required for each cycle was recorded with computer software. Longitudinal sections of ball attachment,positioner,cylinder with O-rings of each angulation were obtained to analyze the relationship among them, and O-ring sections tested in each angulation were compared with an unused counterpart. A mixed linear model was used to analyze the data, and the comparison was performed by orthogonal contrasts (,=0.05). Results: At 0°, the retention force decreased significantly over time, and the retention force was significantly different in all comparisons, except from 12 to 18 months. When the implants were positioned at 7°, the retention force was statistically different at 0 and 24 months. At 14°, significant differences were found from 6 and 12 to 24 months. Conclusions: Within the limitations of this study, it was concluded that O-rings for implant/attachments perpendicular to the occlusal plane were adequately retentive over the first year and that the retentive capacity of O-ring was affected by implant inclinations despite the proposed positioners. [source]