Terrestrial Communities (terrestrial + community)

Distribution by Scientific Domains


Selected Abstracts


Ant versus bird exclusion effects on the arthropod assemblage of an organic citrus grove

ECOLOGICAL ENTOMOLOGY, Issue 3 2010
JOSEP PIŅOL
1. Predation-exclusion experiments have highlighted that top-down control is pervasive in terrestrial communities, but most of these experiments are simplistic in that they only excluded a single group of predators and the effect of removal was evaluated on a few species from the community. The main goal of our study was to experimentally establish the relative effects of ants and birds on the same arthropod assemblage of canopy trees. 2. We conducted 1-year long manipulative experiments in an organic citrus grove intended to quantify the independent effects of bird and ant predators on the abundance of arthropods. Birds were excluded with plastic nets whereas ants were excluded with sticky barriers on the trunks. The sticky barrier also excluded other ground dwelling insects, like the European earwig Forficula auricularia L. 3. Both the exclusion of ants and birds affected the arthropod community of the citrus canopies, but the exclusion of ants was far more important than the exclusion of birds. Indeed, almost all groups of arthropods had higher abundance in ant-excluded than in control trees, whereas only dermapterans were more abundant in bird-excluded than in control trees. A more detailed analysis conducted on spiders also showed that the effect of ant exclusion was limited to a few families rather than being widespread over the entire diverse spectrum of spiders. 4. Our results suggest that the relative importance of vertebrate and invertebrate predators in regulating arthropod populations largely depends on the nature of the predator,prey system. [source]


Quantifying the evidence for ecological synergies

ECOLOGY LETTERS, Issue 12 2008
Emily S. Darling
Abstract There is increasing concern that multiple drivers of ecological change will interact synergistically to accelerate biodiversity loss. However, the prevalence and magnitude of these interactions remain one of the largest uncertainties in projections of future ecological change. We address this uncertainty by performing a meta-analysis of 112 published factorial experiments that evaluated the impacts of multiple stressors on animal mortality in freshwater, marine and terrestrial communities. We found that, on average, mortalities from the combined action of two stressors were not synergistic and this result was consistent across studies investigating different stressors, study organisms and life-history stages. Furthermore, only one-third of relevant experiments displayed truly synergistic effects, which does not support the prevailing ecological paradigm that synergies are rampant. However, in more than three-quarters of relevant experiments, the outcome of multiple stressor interactions was non-additive (i.e. synergies or antagonisms), suggesting that ecological surprises may be more common than simple additive effects. [source]


Ciliate biogeography in Antarctic and Arctic freshwater ecosystems: endemism or global distribution of species?

FEMS MICROBIOLOGY ECOLOGY, Issue 2 2007
Wolfgang Petz
Abstract Ciliate diversity was investigated in situ in freshwater ecosystems of the maritime (South Shetland Islands, mainly Livingston Island, 63°S) and continental Antarctic (Victoria Land, 75°S), and the High Arctic (Svalbard, 79°N). In total, 334 species from 117 genera were identified in both polar regions, i.e. 210 spp. (98 genera) in the Arctic, 120 spp. (73 genera) in the maritime and 59 spp. (41 genera) in the continental Antarctic. Forty-four species (13% of all species) were common to both Arctic and Antarctic freshwater bodies and 19 spp. to both Antarctic areas (12% of all species). Many taxa are cosmopolitans but some, e.g. Stentor and Metopus spp., are not, and over 20% of the taxa found in any one of the three areas are new to science. Cluster analysis revealed that species similarity between different biotopes (soil, moss) within a study area was higher than between similar biotopes in different regions. Distinct differences in the species composition of freshwater and terrestrial communities indicate that most limnetic ciliates are not ubiquitously distributed. These observations and the low congruence in species composition between both polar areas, within Antarctica and between high- and temperate-latitude water bodies, respectively, suggest that long-distance dispersal of limnetic ciliates is restricted and that some species have a limited geographical distribution. [source]


Patch occupancy of North American mammals: is patchiness in the eye of the beholder?

JOURNAL OF BIOGEOGRAPHY, Issue 8 2003
Robert K. Swihart
Abstract Aim Intraspecific variation in patch occupancy often is related to physical features of a landscape, such as the amount and distribution of habitat. However, communities occupying patchy environments typically exhibit non-random distributions in which local assemblages of species-poor patches are nested subsets of assemblages occupying more species-rich patches. Nestedness of local communities implies interspecific differences in sensitivity to patchiness. Several hypotheses have been proposed to explain interspecific variation in responses to patchiness within a community, including differences in (1) colonization ability, (2) extinction proneness, (3) tolerance to disturbance, (4) sociality and (5) level of adaptation to prevailing environmental conditions. We used data on North American mammals to compare the performance of these ,ecological' hypotheses and the ,physical landscape' hypothesis. We then compared the best of these models against models that scaled landscape structure to ecologically relevant attributes of individual species. Location North America. Methods We analysed data on prevalence (i.e. proportion of patches occupied in a network of patches) and occupancy for 137 species of non-volant mammals and twenty networks consisting of four to seventy-five patches. Insular and terrestrial networks exhibited significantly different mean levels of prevalence and occupancy and thus were analysed separately. Indicator variables at ordinal and family levels were included in models to correct for effects caused by phylogeny. Akaike's information criterion was used in conjunction with ordinary least squares and logistic regression to compare hypotheses. Results A patch network's physical structure, indexed using patch area and isolation, received the greatest support among models predicting the prevalence of species on insular networks. Niche breadth (diet and habitat) received the greatest support for predicting prevalence of species occupying terrestrial networks. For both insular and terrestrial systems, physical features (patch area and isolation) received greater support than any of the ecological hypotheses for predicting species occupancy of individual patches. For terrestrial systems, scaling patch area by its suitability to a focal species and by individual area requirements of the species, and scaling patch isolation by species-specific dispersal ability and niche breadth, resulted in models of patch occupancy that were superior to models relying solely on physical landscape features. For all selected models, unexplained levels of variation were high. Main conclusions Stochasticity dominated the systems we studied, indicating that random events are probably quite important in shaping local communities. With respect to deterministic factors, our results suggest that forces affecting species prevalence and occupancy may differ between insular and terrestrial systems. Physical features of insular systems appeared to swamp ecological differences among species in determining prevalence and occupancy, whereas species with broad niches were disproportionately represented in terrestrial networks. We hypothesize that differential extinction over long time periods in highly variable networks has driven nestedness of mammalian communities on islands, whereas differential colonization over shorter time-scales in more homogeneous networks probably governed the local structure of terrestrial communities. Our results also demonstrate that integration of a species' ecological traits with physical features of a patch network is superior to reliance on either factor separately when attempting to predict the species' probability of patch occupancy in terrestrial systems. [source]


Mechanisms of exclusion of native coastal marsh plants by an invasive grass

JOURNAL OF ECOLOGY, Issue 2 2006
TODD E. MINCHINTON
Summary 1Determining the mechanisms by which invasive species exclude natives is critical for conserving and restoring native populations in impacted habitats. In recent decades the grass Phragmites australis has been aggressively invading coastal marshes of North America, with monocultures often replacing diverse assemblages of plants. 2Our objective was to quantify how P. australis modifies the abiotic (soil and light conditions) and biotic (litter and shoots) environment and to determine the mechanisms by which it excludes two common forbs, the annual chenopod Atriplex patula var. hastata and the perennial aster Solidago sempervirens, from the highest tidal elevations of a brackish marsh in southern New England, USA. 3In a 3-year field experiment we added seeds of both forb species to stands of P. australis, where we manipulated shoots and litter in an orthogonal design, and to uninvaded marsh areas dominated by the rush Juncus gerardi, where we manipulated the shoots of the marsh vegetation. In general, seedling establishment and the number of plants surviving until the end of the growing season were substantially greater in areas not invaded by P. australis, and both shoots and litter limited the abundance of forbs within stands. 4Forbs surviving within stands of P. australis grew larger and produced more seeds than those in uninvaded areas, indicating that changes to the soil resulting from invasion do not preclude the survival of established forbs. This was confirmed by a glasshouse study where the performance of forbs in soil collected from within stands of P. australis was better than in soil from areas dominated by J. gerardi. 5Similar to many invasive grasses in terrestrial communities, P. australis excludes native forbs through competition, modifying the biotic environment of the marsh at both the ground (litter) and above-ground (shoots) levels. Our results suggest that successful invaders, such as P. australis, are likely to be the ones that can engineer habitats in multiple ways and limit populations of native species across several critical stages of their life history. [source]


The local introduction of strongly interacting species and the loss of geographic variation in species and species interactions

MOLECULAR ECOLOGY, Issue 1 2008
CRAIG W. BENKMAN
Abstract Species introductions into nearby communities may seem innocuous, however, these introductions, like long-distance introductions (e.g. trans- and intercontinental), can cause extinctions and alter the evolutionary trajectories of remaining community members. These ,local introductions' can also more cryptically homogenize formerly distinct populations within a species. We focus on several characteristics and the potential consequences of local introductions. First, local introductions are commonly successful because the species being introduced is compatible with existing abiotic and biotic conditions; many nearby communities differ because of historical factors and the absence of certain species is simply the result of barriers to dispersal. Moreover, the species with which they interact most strongly (e.g. prey) may have, for example, lost defences making the establishment even more likely. The loss or absence of defences is especially likely when the absent species is a strongly interacting species, which we argue often includes mammals in terrestrial communities. Second, the effects of the introduction may be difficult to detect because the community is likely to converge onto nearby communities that naturally have the introduced species (hence the perceived innocuousness). This homogenization of formerly distinct populations eliminates the geographic diversity of species interactions and the geographic potential for speciation, and reduces regional species diversity. We illustrate these ideas by focusing on the introduction of tree squirrels into formerly squirrel-less forest patches. Such introductions have eliminated incipient species of crossbills (Loxia spp.) co-evolving in arms races with conifers and will likely have considerable impacts on community structure and ecosystem processes. [source]


Trophic supplements to intraguild predation

OIKOS, Issue 4 2007
Matthew P. Daugherty
Intraguild predation (IGP) is a dominant community module in terrestrial food webs that occurs when multiple consumers feed both on each other and on a shared prey. This specific form of omnivory is common in terrestrial communities and is of particular interest for conservation biology and biological control given its potential to disrupt management of threatened or pest species. Extensive theory exists to describe the dynamics of three-species IGP, but these models have largely overlooked the potential for other, exterior interactions, to alter the dynamics within the IGP module. We investigated how three forms of feeding outside of the IGP module by intraguild predators (i.e. trophic supplementation) affect the dynamics of the predators (both IG predator and IG prey) and their shared resource. Specifically, we examined how the provision of a constant donor-controlled resource, the availability of an alternative prey species, and predator plant-feeding affect the dynamics of IGP models. All three forms of trophic supplements modified the basic expectations of IGP theory in two important ways, and their effects were similar. First, coexistence was possible without the IG prey being a superior competitor for the original shared resource if the IG prey could effectively exploit one of the types of trophic supplements. However, supplements to the IG predator restricted the potential for coexistence. Second, supplements to the IG prey ameliorated the disruptive effects of the IG predator on the suppression of the shared resource, promoting effective control of the resource in the presence of both predators. Consideration of these three forms of trophic supplementation, all well documented in natural communities, adds substantial realism and predictive power to intraguild predation theory. [source]


Testing the standard neutral model of biodiversity in lake communities

OIKOS, Issue 1 2007
Steven C. Walker
Hubbell's (2001) neutral model describes how local communities are structured if population dynamics are statistically identical among species in a constant, possibly patchy, environment with random speciation. Tests of this model have been restricted largely to terrestrial communities. Here we tested the fit of this neutral model to fish, zooplankton and phytoplankton species,abundance distributions from 30 well-studied lake communities varying widely in lake size and productivity. We measured the fit of the communities to the neutral model in three ways. All but two zooplankton (7 of 9) and all but three fish (9 of 12) communities were consistent with all three measures of fit. However, all nine phytoplankton communities did not fit the neutral model by at least one measure. This result for phytoplankton communities represents to date the most consistent failure of the standard neutral model to predict the shape of species-abundance distributions. [source]


A RE-EVALUATION OF SPHENACODONTID SYNAPSID MATERIAL FROM THE LOWER PERMIAN FISSURE FILLS NEAR RICHARDS SPUR, OKLAHOMA

PALAEONTOLOGY, Issue 1 2009
DAVID C. EVANS
Abstract:, Early Permian terrestrial vertebrate faunal assemblages of Laurasia are dominated by large ophiacodontid, sphenacodontid, and edaphosaurid synapsids. This pattern contrasts with the fauna recovered from the Early Permian fissure fill deposits near Richards Spur, Oklahoma, where derived nontherapsid synapsids are rare. The fragmentary remains of Thrausmosaurus serratidens constitute the only published report of Sphenacodontidae from this locality. Here, we re-evaluate T. serratidens in light of new information on the faunal assemblage of this locality. We confirm that the type material of T. serratidens cannot be assigned to Sphenacodontidae and conclude that it pertains to an indeterminate varanopid. We also describe new material, including a partial maxilla, several isolated jaw fragments with teeth, an isolated precaniniform tooth and a posterior cervical vertebra that represents unequivocal sphenacodontid remains from the Richards Spur assemblage. This material is the first definitive record of a eupelycosaurian synapsid other than a varanopid from this important locality. Faunal similarities between Richards Spur and the Bromacker Quarry, Germany, may be reflective of upland terrestrial communities during the Early Permian. [source]


The Role of Amoeboid Protists and the Microbial Community in Moss-Rich Terrestrial Ecosystems: Biogeochemical Implications for the Carbon Budget and Carbon Cycle, Especially at Higher Latitudes,

THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 3 2008
O. ROGER ANDERSON
ABSTRACT. Moss-rich terrestrial communities are widely distributed in low- and high-latitude environments, covering vast surface areas in the boreal forests and tundra. The microbial biota in these organic-rich communities may contribute substantially to the carbon budget of terrestrial communities and the carbon cycle on a global scale. Recent research is reported on the carbon content of microbial communities in some temperate and high-latitude moss communities. The total carbon content and potential respiratory carbon dioxide (CO2) efflux is reported for bacteria, microflagellates, naked amoebae, and testate amoebae within sampling sites at a northeastern forest and the tundra at Toolik, Alaska. Quantitative models of the predicted total CO2 efflux from the microbes, based on microscopic observations and enumeration of the microbiota in samples from the research sites, are described and predictions are compared with published field-based data of CO2 efflux. The significance of the predictions for climate change and global warming are discussed. [source]


Ecological contrasts across an Antarctic land,sea interface

AUSTRAL ECOLOGY, Issue 5 2006
CATHERINE L. WALLER
Abstract We report the composition of terrestrial, intertidal and shallow sublittoral faunal communities at sites around Rothera Research Station, Adelaide Island, Antarctic Peninsula. We examined primary hypotheses that the marine environment will have considerably higher species richness, biomass and abundance than the terrestrial, and that both will be greater than that found in the intertidal. We also compared ages and sizes of individuals of selected marine taxa between intertidal and subtidal zones to test the hypothesis that animals in a more stressed environment (intertidal) would be smaller and shorter lived. Species richness of intertidal and subtidal communities was found to be similar, with considerable overlap in composition. However, terrestrial communities showed no overlap with the intertidal, differing from previous reports, particularly from further north on the Antarctic Peninsula and Scotia Arc. Faunal biomass was variable but highest in the sublittoral. While terrestrial communities were depauperate with low biomass they displayed the highest overall abundance, with a mean of over 3 × 105 individuals per square metre. No significant differences in ages of intertidal and subtidal individuals of the same species were found, with bryozoan colonies of up to 4 years of age being present in the intertidal. In contrast with expectation and the limited existing literature we conclude that, while the Antarctic intertidal zone is clearly a suboptimal and highly stressful habitat, its faunal community can be well established and relatively diverse, and is not limited to short-term opportunists or waifs and strays. [source]


Use of arboreal and terrestrial space by a small mammal community in a tropical rain forest in Borneo, Malaysia

JOURNAL OF BIOGEOGRAPHY, Issue 4 2004
Konstans Wells
Abstract Aim, Small mammals were live-trapped in a primary rain forest to evaluate the relative distribution of species to each other and to microhabitat properties on the ground and in the canopy. Location, Kinabalu National Park in Borneo, Sabah, Malaysia. Methods, Seven trapping sessions were conducted along two grids with 31 trap points at distances of 20 m on the ground and in the lower canopy at an average height of 13.5 m. Results, Species diversity and abundance of small mammals proved to be high: 20 species of the families Muridae, Sciuridae, Tupaiidae, Hystricidae, Viverridae and Lorisidae were trapped, with murids being dominant in both habitat layers. The terrestrial community was significantly more diverse with 16 captured species (Shannon,Wiener's diversity index = 2.47), while 11 species were trapped in the canopy ( = 1.59). The Whitehead's rat, Maxomys whiteheadi, and the red spiny rat, Maxomys surifer, dominated the terrestrial community whereas the large pencil-tailed tree mouse, Chiropodomys major, was by far the most abundant species in the canopy. Other abundant species of the canopy community, the dark-tailed tree rat, Niviventer cremoriventer, and the lesser treeshrew, Tupaia minor, were also abundant on the ground, and there was no clear boundary between arboreal and terrestrial species occurrences. Main conclusions, As most species were not confined to specific microhabitats or habitat layers, species seemed to rely on resources not necessarily restricted to certain microhabitats or habitat layers, and separation of species probably resulted mainly from a species' concentrated activity in a preferred microhabitat rather than from principal adaptations to certain habitats. Ecological segregation was stronger in the more diverse terrestrial community, though microhabitat selection was generally not sufficient to explain the co-occurrences of species and the variability between local species assemblages. Constraints on small mammal foraging efficiency in the three-dimensional more complex canopy may be responsible for the similarity of microhabitat use of all common arboreal species. Community composition was characterized by mobile species with low persistence rates, resulting in a high degree of variability in local species assemblages with similar turnover rates in both habitats. [source]


Space and terrestrial photovoltaics: synergy and diversity,

PROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Issue 6 2002
Sheila G. Bailey
A historical view of the research and development in photovoltaics from the perspective of both the terrestrial and the space communities is presented from the early days through the 1970s and 1980s, 1990s and beyond. The synergy of both communities, both at the beginning and in the present, and hopefully in the future, are highlighted, with examples of the important features in each program. The space community which was impressed by the light weight and reliability of photovoltaics drove much of the early development. Even today, nearly every satellite and other scientific space probe that has been launched has included some solar power. However, since the cost of these power systems was only a small fraction of the satellite and launch cost, the use of much of this technology in the terrestrial marketplace was not feasible. It was clear that the focus of the terrestrial community would be best served by reducing costs. This would include addressing a variety of manufacturing issues and raising the rate of production. Success in these programs and a resulting globalization of effort resulted in major strides in the reduction of PV module costs and increased production. Although, the space community derived benefit from some of these advances, its focus was on pushing the envelope with regard to cell efficiency. The gap between theoretical efficiencies and experimental efficiencies for silicon, gallium arsenide and indium phosphide became almost nonexistent. Recent work by both communities have focused on the development thin-film cells of amorphous silicon, CuInSe2 and CdTe. These cells hold the promise of lower costs for the terrestrial community as well as possible flexible substrates, better radiation resistance, and higher specific power for the space community. It is predicted that future trends in both communities will be directed toward advances through the application of nanotechnology. A picture is emerging in which the space and terrestrial solar cell communities shall once again share many common goals and, in fact, companies may manufacture both space and terrestrial solar cells in III,V materials and thin-film materials. Basic photovoltaics research, including these current trends in nanotechnology, provides a valuable service for both worlds in that fundamental understanding of cell processes is still vitally important, particularly with new materials or new cell structures. It is entirely possible that one day we might have one solar array design that will meet the criteria for success in both space and on the Earth or perhaps the Moon or Mars. Published in 2002 by John Wiley & Sons, Ltd. [source]