Terminal Fields (terminal + field)

Distribution by Scientific Domains


Selected Abstracts


Glutamate transporter expression in astrocytes of the rat dentate gyrus following lesion of the entorhinal cortex

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2001
C. Hein
Abstract The glutamate transporters GLT-1 and GLAST localized in astrocytes are essential in limiting transmitter signalling and restricting harmful receptor overstimulation. To show changes in the expression of both transporters following lesion of the entorhinal cortex (and degeneration of the glutamatergic tractus perforans), quantitative microscopic in situ hybridization (ISH) using alkaline-phosphatase-labelled oligonucleotide probes was applied to the outer molecular layer of the hippocampal dentate gyrus of rats (termination field of the tractus perforans). Four groups of rats were studied: sham-operated controls, and animals 3, 14 and 60 days following unilateral electrolytic lesion of the entorhinal cortex. The postlesional shrinkage of the terminal field of the perforant path, ipsilateral to the lesion side, was determined and considered in the evaluation of quantitative ISH data. Statistical analysis revealed that ipsilateral to the lesion side there was a significant decrease of the GLT-1 mRNA at every postlesional time-point and of the GLAST mRNA at 14 and 60 days postlesion. The maximal decrease was ,,45% for GLT-1 and ,,35% for GLAST. In the terminal field of the perforant path contralateral to the lesion side, no significant changes of ISH labelling were measured. The results were complemented by immunocytochemical data achieved using antibodies against synthetic GLT-1 and GLAST peptides. In accordance with ISH results, there was an obvious decrease of GLT-1 and GLAST immunostaining in the terminal field of the perforant path ipsilateral to the lesion side. From these data we conclude that, following a lesioning of the entorhinal cortex, the loss of glutamatergic synapses in the terminal field of the perforant path resulted in a strong downregulation of glutamate transporters in astrocytes. The decrease of synaptically released glutamate or of other neuronal factors could be involved in this downregulation. [source]


Precise matching of olivo-cortical divergence and cortico-nuclear convergence between somatotopically corresponding areas in the medial C1 and medial C3 zones of the paravermal cerebellum

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2000
R. Apps
Abstract The paravermal cerebellar cortex contains three spatially separate zones (the C1, C3 and Y zones) which form a functionally coupled system involved in the control of voluntary limb movements. A series of ,modules' has been postulated, each defined by a set of olivary neurons with similar receptive fields, the cortical microzones innervated by these neurons and the group of deep cerebellar nuclear neurons upon which the microzones converge. A key feature of this modular organization is a correspondence between cortical input and output, irrespective of the zonal identity of the microzone. This was tested directly using a combined electrophysiological and bi-directional tracer technique in barbiturate-anaesthetized cats. During an initial operation, small injections of a mix of retrograde and anterograde tracer material (red beads combined with Fluoro-Ruby or green beads combined with biotinylated dextran amine or Fluoro-Emerald) were made into areas of the medial C1 and medial C3 zones in cerebellar lobule V characterized by olivo-cerebellar input from the ventral forelimb. The inferior olive and the deep cerebellar nuclei were then scrutinized for retrogradely labelled cells and anterogradely labelled axon terminals, respectively. For individual experiments, the degree of C1,C3 zone terminal field overlap in the nucleus interpositus anterior was plotted as a function of either the regional overlap of single-labelled cells or the proportion of double-labelled cells in the dorsal accessory olive. The results were highly positively correlated, indicating that cortico-nuclear convergence between parts of the two zones is in close proportion to the corresponding olivo-cerebellar divergence, entirely consistent with the modular hypothesis. [source]


Hippocampus modulates the behaviorally-sensitizing effects of nicotine in a rat model of novelty-seeking: Potential role for mossy fibers

HIPPOCAMPUS, Issue 10 2007
Amrinder S. Bhatti
Abstract Present experiments investigate interactions between a rat model of the novelty-seeking phenotype and psychomotor sensitization to nicotine (NIC) in adolescence, and the potential role of hippocampal mossy fibers in mediating the behaviorally-sensitizing effects of NIC. Outbred rats were phenotype-screened as high-responders (HR; locomotor reactivity to novelty score ranking in the upper third of the population) or low-responders (LR; locomotor reactivity to novelty score ranking in the lower third of the population). In Experiment 1, both phenotypes were trained with four NIC injections (at 3-d intervals on postnatal days 33,44), and lidocaine microinfusion was used to temporarily inactivate the hippocampal hilus at each NIC injection. Systemic saline and microinjection of artificial cerebral spinal fluid (CSF) were used as controls. During NIC training, lidocaine inactivation caused augmented locomotor response to NIC in HRs compared to LRs irrespective of injection days. Following 1 week of abstinence, all animals were challenged with a low dose of NIC. During challenge, previously NIC/CSF trained LRs and HRs were divided into two; one half receiving lidocaine inactivation of the hippocampal hilus and the other half receiving CSF control microinjection. Only HRs showed behavioral sensitization to the challenge dose of NIC, which was enhanced with lidocaine inactivation. In Experiment 2, a single NIC exposure was found sufficient to induce sensitization to the challenge dose of NIC in HRs, and concurrently an enlarged supra-pyramidal mossy fiber (SP-MF) terminal field. The increase in the SP-MF volume in HRs was greater with repeated NIC training. In both single and repeated NIC training cases, a significant positive morphobehavioral correlation was observed between challenge NIC-induced locomotion and the SP-MF terminal field volume. These findings suggest that the HR hippocampal mossy fibers are vulnerable to neuroadaptive alterations induced by NIC, which may be a substrate for the observed behavioral vulnerability to NIC. © 2007 Wiley-Liss, Inc. [source]


Distribution and morphology of serotonin-immunoreactive axons in the hippocampal region of the New Zealand white rabbit.

HIPPOCAMPUS, Issue 1 2003

Abstract This study provides a detailed light microscopic description of the morphology and distribution of immunohistochemically stained serotonergic axons in the hippocampal region of the New Zealand white rabbit. The serotonergic axons were segregated morphologically into three types: beaded fibers, fine fibers, and stem-axons, respectively. Beaded fibers were thin serotonergic axons with large varicosities, whereas thin axons with small fusiform or granular varicosities were called fine fibers. Finally, thick straight non-varicose axons were called stem-axons. Beaded fibers often formed large conglomerates with numerous boutons (pericellular arrays) in close apposition to the cell-rich layers in the hippocampal region, e.g., the granular and hilar cell layers of the dentate area and the pyramidal cell layer ventrally in CA3. The pericellular arrays in these layers were often encountered in relation to small calbindin-D28K -positive cells, as shown by immunohistochemical double staining for serotonin and calbindin-D28K. The beaded and fine serotonergic fibers displayed a specific innervation pattern in the hippocampal region and were encountered predominantly within the terminal field of the perforant path, e.g., the stratum moleculare hippocampi and the outer two-thirds of the dentate molecular layer. These fibers were also frequently seen in the deep part of the stratum oriens and the alveus, forming a dense plexus in relation to large multipolar calbindin-D28K -positive cells and their basal extensions. Stem-axons were primarily seen in the fimbria and alveus. This innervation pattern was present throughout the entire hippocampal formation, but there were considerable septotemporal differences in the density of the serotonergic innervation. A high density of innervation prevailed in the ventral/temporal part of the hippocampal formation, whereas the dorsal/septal part received only a moderate to weak serotonergic innervation. These results suggest that the serotonergic system could modulate the internal hippocampal circuitry by way of its innervation in the terminal field of the perforant path, the hilus fasciae dentatae, and ventrally in the zone closely apposed to the mossy fiber layer and the pyramidal cells of CA3. This modulation could be of a dual nature, mediated directly by single serotonergic fibers traversing the hippocampal layers or indirectly by the pericellular arrays and their close relation to the calbindin-D28K -positive cells. The marked septotemporal differences in innervation density point toward a difference between the ventral and dorsal parts of the hippocampal formation with respect to serotonergic function and need for serotonergic modulation. Hippocampus 2003;13:21,37. © 2003 Wiley-Liss, Inc. [source]


Stoichiometry of Tyrosine Hydroxylase Phosphorylation in the Nigrostriatal and Mesolimbic Systems In Vivo

JOURNAL OF NEUROCHEMISTRY, Issue 1 2000
Effects of Acute Haloperidol, Related Compounds
Abstract ; Electrical stimulation of the medial forebrain bundle increases 32P incorporation into striatal tyrosine hydroxylase (TH) at Ser 19, Ser31, and Ser40. In the present studies, the effects of acute haloperidol and related drugs on sitespecific TH phosphorylation stoichiometry (PS) in the nigrostriatal and mesolimbic systems were determined by quantitative blot immunolabeling using phosphorylation statespecific antibodies. The striatum (Str), substantia nigra (SN), nucleus accumbens (NAc), and ventral tegmental area (VTA) from Sprague-Dawley rats were harvested 30-40 min after a single injection of either vehicle, haloperidol (2 mg/kg), raclopride (2 mg/kg), clozapine (30 mg/kg), or SCH23390 (0.5 mg/kg). In vehicle-injected control rats, Ser19 PS was 1.5- to 2.5-fold lower in Str and NAc than in SN and VTA, Ser31 PS was two-to fourfold higher in Str and NAc than in SN and VTA, and Ser40 PS was similar between the terminal field and cell body regions. After haloperidol, Ser40 PS increased twofold in Str and NAc, whereas a smaller increase in SN and VTA was observed. The effects of haloperidol on Ser19 PS were similar to those on Ser40 in each region ; however, haloperidol treatment increased Ser31 PS at least 1.6-fold in all regions. The effects of raclopride on TH PS were comparable to those of haloperidol, whereas clozapine treatment increased TH PS at all sites in all regions. By contrast, the effects of SCH23390 on TH PS were relatively small and restricted to the NAc. The stoichiometries of site-specific TH phosphorylation in vivo are presented for the first time. The nigrostriatal and mesolimbic systems have common features of TH PS, distinguished by differences in TH PS between the terminal field and cell body regions and by dissimilar increases in TH PS in the terminal field and cell body regions after acute haloperidol. [source]


Chromogranins as markers of altered hippocampal circuitry in temporal lobe epilepsy

ANNALS OF NEUROLOGY, Issue 2 2001
Susanne Pirker MD
Chromogranins are polypeptides which are widely expressed in the central nervous system. They are stored in dense core vesicles of nerve terminals, from where they are released upon stimulation. Using immunocytochemistry, we investigated the distribution of chromogranin A, chromogranin B, secretoneurin, and, for comparison, dynorphin in hippocampal specimens removed at routine surgery from patients with drug-resistant mesial temporal lobe epilepsy and in autopsy tissues from nonneurologically deceased subjects. In post mortem controls (n = 21), immunoreactivity for all four peptides (most prominently for chromogranin B and dynorphin) was observed in the terminal field of mossy fibers. For chromogranins, staining was observed also in sectors CA1 to CA3 and in the subiculum. Chromogranin B immunoreactivity was found in the inner molecular layer of the dentate gyrus, the area of terminating associational-commissural fibers. Secretoneurin and dynorphin immunoreactivity labeled the outer molecular layer and the stratum lacunosum moleculare of sectors CA1 to CA3, where projections from the entorhinal cortex terminate. In specimens with Ammon's horn sclerosis (n = 25), staining for all three chromogranins and for dynorphin was reduced in the hilus of the dentate gyrus. Instead, intense staining was observed in the inner molecular layer, presumably delineating terminals of sprouted mossy fibers. Specimens obtained from temporal lobe epilepsy patients without Ammon's horn sclerosis (n = 4) lacked this pronounced rearrangement of mossy fibers. In the stratum lacunosum moleculare of sector CA1, secretoneurin and dynorphin immunoreactivity was reduced in sclerotic, but not in nonsclerotic, specimens, paralleling the partial loss of fibers arising from the entorhinal cortex. Instead, presumably sprouted secretoneurin-immunoreactive fibers were found in the outer dentate molecular layer in sclerotic specimens. These changes in staining patterns for chromogranins and dynorphin mark profound plastic and functional rearrangement of hippocampal circuitry in temporal lobe epilepsy. [source]


In vivo voltammetric monitoring of norepinephrine release in the rat ventral bed nucleus of the stria terminalis and anteroventral thalamic nucleus

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2009
Jinwoo Park
Abstract The role and contribution of the dense noradrenergic innervation in the ventral bed nucleus of the stria terminalis (vBNST) and anteroventral thalamic nucleus (AV) to biological function and animal behaviors is poorly understood due to the small size of these nuclei. The aim of this study was to compare norepinephrine release and uptake in the vBNST with that in the AV of anesthetized rats. Measurements were made in vivo with fast-scan cyclic voltammetry following electrical stimulation of noradrenergic projection pathways, either the dorsal noradrenergic bundle (DNB) or the ventral noradrenergic bundle (VNB). The substance detected was identified as norepinephrine based upon voltammetric, anatomical, neurochemical and pharmacological evidence. Fast-scan cyclic voltammetry enables the selective monitoring of local norepinephrine overflow in the vBNST evoked by the stimulation of either the DNB or the VNB while norepinephrine in the AV was only evoked by DNB stimulation. The ,2-adrenoceptor antagonist yohimbine and the norepinephrine uptake inhibitor desipramine increased norepinephrine overflow and slowed its disappearance in both regions. However, control of extracellular norepinephrine by both autoreceptors and uptake was greater in the AV. The greater control exerted by autoreceptors and uptake in the AV resulted in reduced extracellular concentration compared with the v,BNST when large numbers of stimulation pulses were employed. The differences in noradrenergic transmission observed in the terminal fields of the v,BNST and the AV may differentially regulate activity in these two regions that both contain high densities of norepinephrine terminals. [source]


Topographical organization of pathways from somatosensory cortex through the pontine nuclei to tactile regions of the rat cerebellar hemispheres

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2006
Trygve B. Leergaard
Abstract The granule cell layer of the cerebellar hemispheres contains a patchy and noncontinuous map of the body surface, consisting of a complex mosaic of multiple perioral tactile representations. Previous physiological studies have shown that cerebrocerebellar mossy fibre projections, conveyed through the pontine nuclei, are mapped in registration with peripheral tactile projections to the cerebellum. In contrast to the fractured cerebellar map, the primary somatosensory cortex (SI) is somatotopically organized. To understand better the map transformation occurring in cerebrocerebellar pathways, we injected axonal tracers in electrophysiologically defined locations in Sprague,Dawley rat folium crus IIa, and mapped the distribution of retrogradely labelled neurons within the pontine nuclei using three-dimensional (3-D) reconstructions. Tracer injections within the large central upper lip patch in crus IIa-labelled neurons located centrally in the pontine nuclei, primarily contralateral to the injected side. Larger injections (covering multiple crus IIa perioral representations) resulted in labelling extending only slightly beyond this region, with a higher density and more ipsilaterally labelled neurons. Combined axonal tracer injections in upper lip representations in SI and crus IIa, revealed a close spatial correspondence between the cerebropontine terminal fields and the crus IIa projecting neurons. Finally, comparisons with previously published three-dimensional distributions of pontine neurons labelled following tracer injections in face receiving regions in the paramedian lobule (downloaded from http://www.rbwb.org) revealed similar correspondence. The present data support the coherent topographical organization of cerebro-ponto-cerebellar networks previously suggested from physiological studies. We discuss the present findings in the context of transformations from cerebral somatotopic to cerebellar fractured tactile representations. [source]


Role of activity-dependent mechanisms in the control of dopaminergic neuron survival

JOURNAL OF NEUROCHEMISTRY, Issue 2 2007
Patrick P. Michel
Abstract Dopaminergic neurons that constitute the nigrostriatal pathway are characterized by singular electrical properties that allow them to discharge in vivo spontaneously in a spectrum of patterns ranging from pacemaker to random and bursting modes. These electrophysiological features allow dopaminergic neurons to optimize the release of dopamine in their terminal fields. However, there is emerging evidence indicating that electrical activity might also participate in the control of dopaminergic neuron survival, not only during development, but also in the adult brain, thus raising the possibility that alterations in ionic currents could contribute actively to the demise of these neurons in Parkinson disease. This review focuses on the mechanisms by which activity-dependent mechanisms might modulate dopaminergic cell survival. [source]


Molecular determinants of the face map development in the trigeminal brainstem

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 2 2006
Reha S. Erzurumlu
Abstract The perception of external sensory information by the brain requires highly ordered synaptic connectivity between peripheral sensory neurons and their targets in the central nervous system. Since the discovery of the whisker-related barrel patterns in the mouse cortex, the trigeminal system has become a favorite model for study of how its connectivity and somatotopic maps are established during development. The trigeminal brainstem nuclei are the first CNS regions where whisker-specific neural patterns are set up by the trigeminal afferents that innervate the whiskers. In particular, barrelette patterns in the principal sensory nucleus of the trigeminal nerve provide the template for similar patterns in the face representation areas of the thalamus and subsequently in the primary somatosensory cortex. Here, we describe and review studies of neurotrophins, multiple axon guidance molecules, transcription factors, and glutamate receptors during early development of trigeminal connections between the whiskers and the brainstem that lead to emergence of patterned face maps. Studies from our laboratories and others' showed that developing trigeminal ganglion cells and their axons depend on a variety of molecular signals that cooperatively direct them to proper peripheral and central targets and sculpt their synaptic terminal fields into patterns that replicate the organization of the whiskers on the muzzle. Similar mechanisms may also be used by trigeminothalamic and thalamocortical projections in establishing patterned neural modules upstream from the trigeminal brainstem. © 2006 Wiley-Liss, Inc. [source]


Calcium-binding protein immunoreactivity characterizes the auditory system of Gekko gecko

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 17 2010
Kai Yan
Abstract Geckos use vocalizations for intraspecific communication, but little is known about the organization of their central auditory system. We therefore used antibodies against the calcium-binding proteins calretinin (CR), parvalbumin (PV), and calbindin-D28k (CB) to characterize the gecko auditory system. We also examined expression of both glutamic acid decarboxlase (GAD) and synaptic vesicle protein (SV2). Western blots showed that these antibodies are specific to gecko brain. All three calcium-binding proteins were expressed in the auditory nerve, and CR immunoreactivity labeled the first-order nuclei and delineated the terminal fields associated with the ascending projections from the first-order auditory nuclei. PV expression characterized the superior olivary nuclei, whereas GAD immunoreactivity characterized many neurons in the nucleus of the lateral lemniscus and some neurons in the torus semicircularis. In the auditory midbrain, the distribution of CR, PV, and CB characterized divisions within the central nucleus of the torus semicircularis. All three calcium-binding proteins were expressed in nucleus medialis of the thalamus. These expression patterns are similar to those described for other vertebrates. J. Comp. Neurol. 518:3409,3426, 2010. © 2010 Wiley-Liss, Inc. [source]


Organization of tectopontine terminals within the pontine nuclei of the rat and their spatial relationship to terminals from the visual and somatosensory cortex

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2005
Cornelius Schwarz
Abstract We investigated the spatial relationship of axonal and dendritic structures in the rat pontine nuclei (PN), which transfer visual signals from the superior colliculus (SC) and visual cortex (A17) to the cerebellum. Double anterograde tracing (DiI and DiAsp) from different sites in the SC showed that the tectal retinotopy of visual signals is largely lost in the PN. Whereas axon terminals from lateral sites in the SC were confined to a single terminal field close to the cerebral peduncle, medial sites in the SC projected to an additional dorsolateral one. On the other hand, axon terminals originating from the two structures occupy close but, nevertheless, totally nonoverlapping terminal fields within the PN. Furthermore, a quantitative analysis of the dendritic trees of intracellularly filled identified pontine projection neurons showed that the dendritic fields were confined to either the SC or the A17 terminal fields and never extended into both. We also investigated the projections carrying cortical somatosensory inputs to the PN as these signals are known to converge with tectal ones in the cerebellum. However, terminals originating in the whisker representation of the primary somatosensory cortex and in the SC were located in segregated pontine compartments as well. Our results, therefore, point to a possible pontocerebellar mapping rule: Functionally related signals, commonly destined for common cerebellar target zones but residing in different afferent locations, may be kept segregated on the level of the PN and converge only later at specific sites in the granular layer of cerebellar cortex. J. Comp. Neurol. 484:283,298, 2005. © 2005 Wiley-Liss, Inc. [source]