Basement Rocks (basement + rock)

Distribution by Scientific Domains


Selected Abstracts


Major and trace element provenance signatures in stream sediments from the Kando River, San'in district, southwest Japan

ISLAND ARC, Issue 2 2006
Edwin Ortiz
Abstract Basement rocks in the catchment of the Kando River in southwest Japan can be divided into two main groups. Paleogene to Cretaceous felsic granitoids and volcanic rocks dominate in the upstream section, and more mafic, mostly Miocene volcanic and volcaniclastic rocks occur in the downstream reaches. Geochemically distinctive Mount Sambe adakitic volcanic products also crop out in the west. X-ray fluorescence analyses of major elements and 14 trace elements were made of two size fractions (<180 and 180,2000 µm) from 86 stream sediments collected within the catchment, to examine contrasts in composition between the fractions as a result of sorting and varying source lithotype. The <180 µm fractions are depleted in SiO2 and enriched in most other major and trace elements relative to the 180,2000 µm fractions. Na2O, K2O, Ba, Rb and Sr are either depleted relative to the 180,2000 µm fractions, or show little contrast in abundance. Sediments from granitoid-dominated catchments are distinguished by greater K2O, Th, Rb, Ba and Nb than those derived from the Miocene volcanic rocks. Granitoid-derived <180 µm fractions are also enriched in Zr, Ce and Y. Sediments derived from the Miocene volcanic rocks generally contain greater TiO2, Fe2O3*, Sc, V, MgO and P2O5, reflecting their more mafic source. Sediments containing Sambe volcanic rocks in their source are marked by higher Sr, CaO, Na2O and lower Y, reflecting an adakitic signature that persists into the lower main channel, where compositions become less variable as the bedload is homogenized. Normalization against source averages shows that compositions of the 180,2000 µm fractions are less fractionated from their parents than are the <180 µm fractions, which are enriched for some elements. Contrast between the size fractions is greatest for the granitoid-derived sediments. Weathering indices of the sediments are relatively low, indicating source weathering is moderate, and typical of temperate climates. Some zircon concentration has occurred in granitoid-derived <180 µm fractions relative to 180,2000 µm counterparts, but Th/Sc and Zr/Sc ratios overall closely reflect both provenance and homogenization in the lower reaches. [source]


Geothermal activity at the archaeological site of Aghia Kyriaki and its significance to Roman industrial mineral exploitation on Melos, Greece

GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 3 2003
A. J. Hall
The geothermal setting of the archaeological site at Aghia Kyriaki, Southeast Melos (or Milos) was investigated in order to help clarify the possible role of the site in mineral exploitation on Melos in Roman times. There are active sulfurous fumaroles in the area and these were also potential sources of sulfur and alum-group minerals in Roman times. However, geothermal activity has been ongoing in Southeast Melos for hundreds of thousands of years, and extensive hydrothermal alteration of basement rocks to the northeast of the site has produced "white rocks" containing additional potential industrial minerals such as kaolin and alunite. The archaeological remains occur within, but mainly near the surface, of a deeply gullied sequence of late Quaternary alluvial sediments, which consist mainly of metamorphic detritus but are rich in sulfates; the remains contain pottery sherds through the entire sequence of about 40 m. They were deposited on an earlier gullied topography of felsic tuffs overlying the metamorphic basement. Pervasive and veinlike intense reddish alteration of these sediments is probably mainly due to superheated fluid escaping from depth. Field observations demonstrate that this took place after the main phase of building but was likely to be ongoing during occupation of the site. While industrial minerals and geothermal energy would therefore have been available in the Roman period, any relationship of the site to mineral exploitation will have to be determined by archaeological excavation. © 2003 Wiley Periodicals, Inc. [source]


Precipitation of lead,zinc ores in the Mississippi Valley-type deposit at Trèves, Cévennes region of southern France

GEOFLUIDS (ELECTRONIC), Issue 1 2006
D. LEACH
Abstract The Trèves zinc,lead deposit is one of several Mississippi Valley-type (MVT) deposits in the Cévennes region of southern France. Fluid inclusion studies show that the ore was deposited at temperatures between approximately 80 and 150°C from a brine that derived its salinity mainly from the evaporation of seawater past halite saturation. Lead isotope studies suggest that the metals were extracted from local basement rocks. Sulfur isotope data and studies of organic matter indicate that the reduced sulfur in the ores was derived from the reduction of Mesozoic marine sulfate by thermochemical sulfate reduction or bacterially mediated processes at a different time or place from ore deposition. The large range of ,34S values determined for the minerals in the deposit (12.2,19.2, for barite, 3.8,13.8, for sphalerite and galena, and 8.7 to ,21.2, for pyrite), are best explained by the mixing of fluids containing different sources of sulfur. Geochemical reaction path calculations, based on quantitative fluid inclusion data and constrained by field observations, were used to evaluate possible precipitation mechanisms. The most important precipitation mechanism was probably the mixing of fluids containing different metal and reduced sulfur contents. Cooling, dilution, and changes in pH of the ore fluid probably played a minor role in the precipitation of ores. The optimum results that produced the most metal sulfide deposition with the least amount of fluid was the mixing of a fluid containing low amounts of reduced sulfur with a sulfur-rich, metal poor fluid. In this scenario, large amounts of sphalerite and galena are precipitated, together with smaller quantities of pyrite precipitated and dolomite dissolved. The relative amounts of metal precipitated and dolomite dissolved in this scenario agree with field observations that show only minor dolomite dissolution during ore deposition. The modeling results demonstrate the important control of the reduced sulfur concentration on the Zn and Pb transport capacity of the ore fluid and the volumes of fluid required to form the deposit. The studies of the Trèves ores provide insights into the ore-forming processes of a typical MVT deposit in the Cévennes region. However, the extent to which these processes can be extrapolated to other MVT deposits in the Cévennes region is problematic. Nevertheless, the evidence for the extensive migration of fluids in the basement and sedimentary cover rocks in the Cévennes region suggests that the ore forming processes for the Trèves deposit must be considered equally viable possibilities for the numerous fault-controlled and mineralogically similar MVT deposits in the Cévennes region. [source]


The upper continental crust, an aquifer and its fluid: hydaulic and chemical data from 4 km depth in fractured crystalline basement rocks at the KTB test site

GEOFLUIDS (ELECTRONIC), Issue 1 2005
I. STOBER
Abstract Detailed information on the hydrogeologic and hydraulic properties of the deeper parts of the upper continental crust is scarce. The pilot hole of the deep research drillhole (KTB) in crystalline basement of central Germany provided access to the crust for an exceptional pumping experiment of 1-year duration. The hydraulic properties of fractured crystalline rocks at 4 km depth were derived from the well test and a total of 23100 m3 of saline fluid was pumped from the crustal reservoir. The experiment shows that the water-saturated fracture pore space of the brittle upper crust is highly connected, hence, the continental upper crust is an aquifer. The pressure,time data from the well tests showed three distinct flow periods: the first period relates to wellbore storage and skin effects, the second flow period shows the typical characteristics of the homogeneous isotropic basement rock aquifer and the third flow period relates to the influence of a distant hydraulic border, probably an effect of the Franconian lineament, a steep dipping major thrust fault known from surface geology. The data analysis provided a transmissivity of the pumped aquifer T = 6.1 × 10,6 m2 sec,1, the corresponding hydraulic conductivity (permeability) is K = 4.07 × 10,8 m sec,1 and the computed storage coefficient (storativity) of the aquifer of about S = 5 × 10,6. This unexpected high permeability of the continental upper crust is well within the conditions of possible advective flow. The average flow porosity of the fractured basement aquifer is 0.6,0.7% and this range can be taken as a representative and characteristic values for the continental upper crust in general. The chemical composition of the pumped fluid was nearly constant during the 1-year test. The total of dissolved solids amounts to 62 g l,1 and comprise mainly a mixture of CaCl2 and NaCl; all other dissolved components amount to about 2 g l,1. The cation proportions of the fluid (XCa approximately 0.6) reflects the mineralogical composition of the reservoir rock and the high salinity results from desiccation (H2O-loss) due to the formation of abundant hydrate minerals during water,rock interaction. The constant fluid composition suggests that the fluid has been pumped from a rather homogeneous reservoir lithology dominated by metagabbros and amphibolites containing abundant Ca-rich plagioclase. [source]


Infiltration of basinal fluids into high-grade basement, South Norway: sources and behaviour of waters and brines

GEOFLUIDS (ELECTRONIC), Issue 1 2003
S. A. Gleeson
Abstract Quartz veins hosted by the high-grade crystalline rocks of the Modum complex, Southern Norway, formed when basinal fluids from an overlying Palaeozoic foreland basin infiltrated the basement at temperatures of c. 220°C (higher in the southernmost part of the area). This infiltration resulted in the formation of veins containing both two-phase and halite-bearing aqueous fluid inclusions, sometimes with bitumen and hydrocarbon inclusions. Microthermometric results demonstrate a very wide range of salinities of aqueous fluids preserved in these veins, ranging from c. 0 to 40 wt% NaCl equivalent. The range in homogenization temperatures is also very large (99,322°C for the entire dataset) and shows little or no correlation with salinity. A combination of aqueous fluid microthermometry, halogen geochemistry and oxygen isotope studies suggest that fluids from a range of separate aquifers were responsible for the quartz growth, but all have chemistries comparable to sedimentary formation waters. The bulk of the quartz grew from relatively low ,18O fluids derived directly from the basin or equilibrated in the upper part of the basement (T < 200°C). Nevertheless, some fluids acquired higher salinities due to deep wall-rock hydration reactions leading to salt saturation at high temperatures (>300°C). The range in fluid inclusion homogenization temperatures and densities, combined with estimates of the ambient temperature of the basement rocks suggests that at different times veins acted as conduits for influx of both hotter and colder fluids, as well as experiencing fluctuations in fluid pressure. This is interpreted to reflect episodic flow linked to seismicity, with hotter dry basement rocks acting as a sink for cooler fluids from the overlying basin, while detailed flow paths reflected local effects of opening and closing of individual fractures as well as reaction with wall rocks. Thermal considerations suggest that the duration of some flow events was very short, possibly in the order of days. As a result of the complex pattern of fracturing and flow in the Modum basement, it was possible for shallow fluids to penetrate basement rocks at significantly higher temperatures, and this demonstrates the potential for hydrolytic weakening of continental crust by sedimentary fluids. [source]


Ophiolite-bearing mélanges in southern Italy

GEOLOGICAL JOURNAL, Issue 2 2009
Luigi Tortorici
Abstract In southern Italy two ophiolite-bearing belts, respectively involved in the Adria-verging southern Apennines and in the Europe-verging thrust belt of the northern Calabrian Arc, represent the southward extension of the northern Apennines and of ,Alpine Corsica' ophiolitic units, respectively. They form two distinct suture zones, which are characterized by different age of emplacement and opposite sense of tectonic transport. The ophiolite-bearing units of the southern Apennines are represented by broken formation and tectonic mélange associated with remnants of a well-developed accretionary wedge emplaced on top of the Adria continental margin, with an overall NE direction of tectonic transport. These units consist of a Cretaceous-Oligocene matrix, which includes blocks of continental-type rocks and ophiolites with remnants of their original Upper Jurassic to Lower Cretaceous pelagic cover. The innermost portion of the accretionary wedge is represented by a polymetamorphosed and polydeformed tectonic units that underwent a Late Oligocene high pressure/low temperature (HP/LT) metamorphism. The northern Calabria ophiolitic-belt is indeed composed of west-verging tectonic slices of oceanic rocks which, embedded between platform carbonate units of a western continental margin at the bottom and the basement crystalline nappes of the Calabrian Arc at the top, are affected by a Late Eocene-Early Oligocene HP/LT metamorphism. The main tectonic features of these two suture zones suggest that they can be interpreted as the result of the closure of two branches of the western Neotethys separated by a continental block that includes the crystalline basement rocks of the Calabrian Arc. We thus suggest that the north-east verging southern Apennine suture constituted by a well-developed accretionary wedge is the result of the closure of a large Late Jurassic-Early Cretaceous oceanic domain (the Ligurian Ocean) located between the African (the Adria Block) and European continental margins. The northern Calabria suture derives indeed from the deformation of a very narrow oceanic-floored basin developed during the Mesozoic rifting stages within the European margin separating a small continental ribbon (Calabrian Block) from the main continent. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Stratigraphic and structural evolution of the Blue Nile Basin, Northwestern Ethiopian Plateau

GEOLOGICAL JOURNAL, Issue 1 2009
N. DS.
Abstract The Blue Nile Basin, situated in the Northwestern Ethiopian Plateau, contains ,1400,m thick Mesozoic sedimentary section underlain by Neoproterozoic basement rocks and overlain by Early,Late Oligocene and Quaternary volcanic rocks. This study outlines the stratigraphic and structural evolution of the Blue Nile Basin based on field and remote sensing studies along the Gorge of the Nile. The Blue Nile Basin has evolved in three main phases: (1) pre-sedimentation phase, include pre-rift peneplanation of the Neoproterozoic basement rocks, possibly during Palaeozoic time; (2) sedimentation phase from Triassic to Early Cretaceous, including: (a) Triassic,Early Jurassic fluvial sedimentation (Lower Sandstone, ,300,m thick); (b) Early Jurassic marine transgression (glauconitic sandy mudstone, ,30,m thick); (c) Early,Middle Jurassic deepening of the basin (Lower Limestone, ,450,m thick); (d) desiccation of the basin and deposition of Early,Middle Jurassic gypsum; (e) Middle,Late Jurassic marine transgression (Upper Limestone, ,400,m thick); (f) Late Jurassic,Early Cretaceous basin-uplift and marine regression (alluvial/fluvial Upper Sandstone, ,280,m thick); (3) the post-sedimentation phase, including Early,Late Oligocene eruption of 500,2000,m thick Lower volcanic rocks, related to the Afar Mantle Plume and emplacement of ,300,m thick Quaternary Upper volcanic rocks. The Mesozoic to Cenozoic units were deposited during extension attributed to Triassic,Cretaceous NE,SW-directed extension related to the Mesozoic rifting of Gondwana. The Blue Nile Basin was formed as a NW-trending rift, within which much of the Mesozoic clastic and marine sediments were deposited. This was followed by Late Miocene NW,SE-directed extension related to the Main Ethiopian Rift that formed NE-trending faults, affecting Lower volcanic rocks and the upper part of the Mesozoic section. The region was subsequently affected by Quaternary E,W and NNE,SSW-directed extensions related to oblique opening of the Main Ethiopian Rift and development of E-trending transverse faults, as well as NE,SW-directed extension in southern Afar (related to northeastward separation of the Arabian Plate from the African Plate) and E,W-directed extensions in western Afar (related to the stepping of the Red Sea axis into Afar). These Quaternary stress regimes resulted in the development of N-, ESE- and NW-trending extensional structures within the Blue Nile Basin. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Fluid evolution in base-metal sulphide mineral deposits in the metamorphic basement rocks of southwest Scotland and Northern Ireland

GEOLOGICAL JOURNAL, Issue 1 2005
Martin Baron
Abstract The Dalradian and Ordovician,Silurian metamorphic basement rocks of southwest Scotland and Northern Ireland host a number of base-metal sulphide-bearing vein deposits associated with kilometre-scale fracture systems. Fluid inclusion microthermometric analysis reveals two distinct fluid types are present at more than half of these deposits. The first is an H2O,CO2,salt fluid, which was probably derived from devolatilization reactions during Caledonian metamorphism. This stage of mineralization in Dalradian rocks was associated with base-metal deposition and occurred at temperatures between 220 and 360°C and pressures of between 1.6 and 1.9,kbar. Caledonian mineralization in Ordovician,Silurian metamorphic rocks occurred at temperatures between 300 and 360°C and pressures between 0.6 and 1.9,kbar. A later, probably Carboniferous, stage of mineralization was associated with base-metal sulphide deposition and involved a low to moderate temperature (Th 70 to 240°C), low to moderate salinity (0 to 20,wt% NaCl eq.), H2O,salt fluid. The presence of both fluids at many of the deposits shows that the fractures hosting the deposits acted as long-term controls for fluid migration and the location of Caledonian metalliferous fluids as well as Carboniferous metalliferous fluids. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Provenance of sandstones from the Wakino Subgroup of the Lower Cretaceous Kanmon Group, northern Kyushu, Japan

ISLAND ARC, Issue 1 2000
Daniel K. Asiedu
Abstract The Wakino Subgroup is a lower stratigraphic unit of the Lower Cretaceous Kanmon Group. Previous studies on provenance of Wakino sediments have mainly concentrated on either petrography of major framework grains or bulk rock geochemistry of shales. This study addresses the provenance of the Wakino sandstones by integrating the petrographic, bulk rock geochemistry, and mineral chemistry approaches. The proportions of framework grains of the Wakino sandstones suggest derivation from either a single geologically heterogeneous source terrane or multiple source areas. Major source lithologies are granitic rocks and high-grade metamorphic rocks but notable amounts of detritus were also derived from felsic, intermediate and mafic volcanic rocks, older sedimentary rocks, and ophiolitic rocks. The heavy mineral assemblage include, in order of decreasing abundance: opaque minerals (ilmenite and magnetite with minor rutile), zircon, garnet, chromian spinel, aluminum silicate mineral (probably andalusite), rutile, epidote, tourmaline and pyroxene. Zircon morphology suggests its derivation from granitic rocks. Chemistry of chromian spinel indicates that the chromian spinel grains were derived from the ultramafic cumulate member of an ophiolite suite. Garnet and ilmenite chemistry suggests their derivation from metamorphic rocks of the epidote-amphibolite to upper amphibolite facies though other source rocks cannot be discounted entirely. Major and trace element data for the Wakino sediments suggest their derivation from igneous and/or metamorphic rocks of felsic composition. The major element compositions suggest that the type of tectonic environment was of an active continental margin. The trace element data indicate that the sediments were derived from crustal rocks with a minor contribution from mantle-derived rocks. The trace element data further suggest that recycled sedimentary rocks are not major contributors of detritus. It appears that the granitic and metamorphic rocks of the Precambrian Ryongnam Massif in South Korea were the major contributors of detritus to the Wakino basin. A minor but significant amount of detritus was derived from the basement rocks of the Akiyoshi and Sangun Terrane. The chromian spinel appears to have been derived from a missing terrane though the ultramafic rocks in the Ogcheon Belt cannot be discounted. [source]


Petrology and P,T path of the Fuping mafic granulites: implications for tectonic evolution of the central zone of the North China craton

JOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2000
G. C. Zhao
The Fuping Complex and the adjoining Wutai and Hengshan Complexes are located in the central zone of the North China craton. The dominant rock types in the Fuping Complex are high-grade tonalitic,trondhjemitic,granodioritic (TTG) gneisses, with minor amounts of mafic granulites, syntectonic granitic rocks and supracrustal rocks. The petrological evidence from the mafic granulites indicates three stages of metamorphic evolution. The M1 stage is represented by garnet porphyroblasts and matrix plagioclase, quartz, orthopyroxene, clinopyroxene and hornblende. Orthopyroxene+plagioclase symplectites and clinopyroxene+plagioclase±orthopyroxene coronas formed in response to decompression during M2 following the peak metamorphism at M1. Hornblende+plagioclase symplectites formed as a result of further isobaric cooling and retrograde metamorphism during M3. The P,T estimates using TWQ thermobarometry are: 900,950 °C and 8.0,8.5 kbar for the peak assemblage (M1), based on the core compositions of garnet, matrix pyroxene and plagioclase; 700,800 °C and 6.0,7.0 kbar for the pyroxene+plagioclase symplectites or coronas (M2); and 550,650 °C and 5.3,6.3 kbar for the hornblende+plagioclase symplectites (M3), based on garnet rim and corresponding symplectic mineral compositions. These P,T estimates define a clockwise P,T path involving near-isothermal decompression for the Fuping Complex, similar to the P,T path estimated for the metapelitic gneisses. The inferred P,T path suggests that the Fuping Complex underwent initial crustal thickening, subsequent exhumation, and finally cooling and retrogression. This tectonothermal path is similar to P,T paths inferred for the Wutai and Hengshan Complexes and other tectonic units in the central zone of the North China craton, but different from anti-clockwise P,T paths estimated for the basement rocks in the eastern and western zones of the craton. Based on lithological, structural, metamorphic and geochronological data, the eastern and western zones of the craton are considered to represent two different Archean to Paleoproterozoic continental blocks that amalgamated along the central zone at the end of Paleoproterozoic. The P,T paths of the Fuping Complex and other tectonic units in the central zone record the collision between the eastern and western zones that led to the final assembly of the North China craton at c. 1800 Ma. [source]


Karst rocky desertification in southwestern China: geomorphology, landuse, impact and rehabilitation

LAND DEGRADATION AND DEVELOPMENT, Issue 2 2004
S.-J. Wang
Abstract Karst rocky desertification is a process of land degradation involving serious soil erosion, extensive exposure of basement rocks, drastic decrease in soil productivity, and the appearance of a desert-like landscape. It is caused by irrational, intensive land use on a fragile karst geo-ecological environment. The process is expanding rapidly, and it is daily reducing the living space of residents and is the root of disasters and poverty in the karst areas of southwestern China. The tectonic, geomorphic and environmental background to karst rocky desertification is analysed. Population pressure and the intensive land use that have led to this serious land degradation are described. Although the problem concerns the Chinese Government and some profitable experience in the partial restoration or reconstruction of the ecological environment has been gained, effective remedial action has not been achieved on a large scale. Copyright © 2004 John Wiley & Sons, Ltd. [source]


How types of carbonate rock assemblages constrain the distribution of karst rocky desertified land in Guizhou Province, PR China: phenomena and mechanisms

LAND DEGRADATION AND DEVELOPMENT, Issue 2 2004
S.-J. Wang
Abstract In southwestern China karst rocky desertification (a process of land degradation involving serious soil erosion, extensive exposure of basement rocks, drastic decrease of soil productivity and the appearance of a desert-like landscape) results from irrational land use on the fragile, thin karst soil. Soil particles in the Guizhou karst plateau were accumulated predominantly from residues left behind after the dissolution of carbonate rocks, and the thickness of the soil layer is related to the amount of argillaceous substances in the lost carbonate rock. This paper examines the spatial distribution of karst rocky desertified (KRD) land in Guizhou Province, and relates it to the different assemblages of basement carbonate rocks. Types of carbonate rock assemblages are discussed using a 1,:,500000 scale digital-distribution map. Their distribution and sensitivity to erosion are analysed, demonstrating that the occurrence of KRD land is positively correlated to homogeneous carbonate rocks. Differences in physical and chemical properties of limestone and dolomite rocks lead to differences in dissolution, accumulation rate of soil particles and relief on the surface, and these factors influence land-use potential. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Impactites as a random medium,Using variations in physical properties to assess heterogeneity within the Bosumtwi meteorite impact crater

METEORITICS & PLANETARY SCIENCE, Issue 4-5 2007
Elizabeth L'HEUREUX
The damage induced by impact results in extensive fracturing and mixing of target materials. We discuss here a means of using sonic velocity and density logs from two boreholes through the Bosumtwi crater fill and basement to estimate the degree of heterogeneity and fracturing within the impacted target, in order to understand the discrepancy between the large impedances derived from the log data and the nonreflective zone of impactites observed in seismic sections. Based on an analysis of the stochastic fluctuations in the log data, the Bosumtwi impactites are characterized by vertical scale lengths of 2,3 m. From the resolution of the seismic data over the crater, horizontal scale lengths are estimated at <12 m. The impactites therefore fall within the quasi-homogeneous scattering regime, i.e., seismic energy will propagate through the medium with little disruption. Scale lengths as small as these are observed in the fractured basement rocks of impact structures, whereas non-impact related crystalline environments are characterized by scale lengths an order of magnitude larger. Assuming that the high-frequency fluctuations observed in the log data are more sensitive to fracture distribution than petrology, this suggests that the small scale lengths observed within impact structures are characteristic of impact-induced damage, and could be used to estimate the extent of fracturing undergone by the rocks at any depth below an impact structure. [source]


Geology, Wall-rock Alteration and Vein Paragenesis of the Bilimoia Gold Deposit, Kainantu Metallogenic Region, Papua New Guinea

RESOURCE GEOLOGY, Issue 3 2007
Joseph Onglo Espi
Abstract The Bilimoia deposit (2.23 Mt, 24 g/t Au), located in the eastern Central Mobile Belt of mainland Papua New Guinea, is composed of fault-hosted, NW,NNW-trending Irumafimpa,Kora and Judd,Upper Kora Au-quartz veins hosted by Middle,Late Triassic basement that was metamorphosed to medium-grade greenschist facies between Middle,Late Triassic and Early,Middle Jurassic. Mineralizing fluids were introduced during crustal thickening, rapid uplift, change of plate motions from oblique to orthogonal compression, active faulting and S3 and S4 events in an S1,S4 deformation sequence. The Bilimoia deposit is spatially and temporally related to I-type, early intermediate to felsic and late mafic intrusions emplaced in Late Miocene (9,7 Ma). Hydrothermal alteration and associated mineralization is divided into 10 main paragenetic stages: (1) chlorite,epidote-selvaged quartz,calcite,specularite vein; (2) local quartz,illite,pyrite alteration; (3) quartz,sericite,mariposite,fuchsite,pyrite wall-rock alteration that delimits the bounding shears; (4) finely banded, colloform-, crustiform- and cockade-textured and drusy quartz ± early wolframite ± late adularia; (5) hematite; (6) pyrite; (7) quartz ± amethyst-base metal sulfides; (8) quartz,chalcopyrite,bornite,Sn and Cu sulfides,Au tellurides and Te ± Bi ± Ag ± Cu ± Pb phases; (9) Fe ± Mn carbonates; and (10) supergene overprint. Fluid inclusions in stage 4 are characterized by low salinity (0.9,5.4 wt% NaCl equivalent), aqueous,carbonic fluids with total homogenization temperatures ranging from 210 to 330°C. Some of the inclusions that homogenized between 285 and 330°C host coexisting liquid- and vapor-rich (including carbonic) phases, suggesting phase separation. Fluid inclusions in quartz intergrown with wolframite have low salinity (0.9,1.2 wt% NaCl equivalent), aqueous,carbonic fluids at 240,260°C, defining the latter's depositional conditions. The ore fluids were derived from oxidized magmatic source initially contaminated by reduced basement rocks. Wall-rock alteration and involvement of circulating meteoric waters were dominant during the first three stages and early part of stage 4. Stage 5 hematite was deposited as a result of stage 4 phase separation or entrainment of oxygenated groundwater. Gold is associated with Te- and Bi-bearing minerals and mostly precipitated as gold-tellurides during stage 8. Gold deposition occurred below 350°C due to a change in the sulfidation and oxidation state of the fluids, depressurization and decreasing temperature and activities of sulfur and tellurium. Bisulfides are considered to be the main Au-transporting complexes. The Bilimoia deposit has affinities that are similar to many gold systems termed epizonal orogenic and intrusion-related. The current data allow us to classify the Bilimoia deposit as a fault-controlled, metamorphic-hosted, intrusion-related mesothermal to low sulfidation epithermal quartz,Au,Te,Bi vein system. [source]


Sulfur Isotope Study of Precambrian Basement and Mesozoic Intrusive Rocks in the Southwestern Part of Ryeongnam Massif, Korea

RESOURCE GEOLOGY, Issue 1 2003
Chung-Han Yoon
Abstract. Isotope composition of whole rock sulfur has been measured on 14 schists, 10 gneisses, 7 gabbroids, 7 granitoids and 2 sedimentary rocks, with of 9 sulfide (pyrite) sulfurs in gabbros and granitoids, from the southwestern part of the Ryeongnam Massif, Korea. The ,34S values of schists range from -4.6 to +6.1 % (average +0.9 %), those of gneisses from -4.0 to +0.8 % (-1.9%), those of gabbroids from -2.3 to +3.7 % (+1.0 %), and those of granitoids from -5.9 to +3.2 % (-1.9 %). The ,34S values of pyrite separated from gabbros and granitoids show rather heavier values ranging from +3.1 to +9.4 % with an average of+5.8%. Though the ,34S values of whole rock sulfur give wide range of -5.9 to +6.1 %, the average of about -0.5 % is close to the mantle value. The granitoids sampled at the central parts of intrusive bodies or at the contacts with other plutonic rocks tend to show positive values, while those sampled near the boundary with basement rocks such as granitic gneiss and por-phyroblastic gneiss show negative values. Though the reason of this tendency is not clear at present, the ,34S values of some granitoids in this area seem to represent possible influence by the assimilation of country rocks, particularly of gneisses. Average isotopic compositions of ore sulfur from individual metal deposits in the studied area are summarized to have a range of+1.0 to +7.8 % with an average value of+3.2 %. The values are consistent with the previous finding that the ore sulfur isotopic values of the Ryeongnam Massif are the lowest among the four tectonic belts in Korea; Gyeonggi Massif, Ogcheon Belt, Ryeongnam Massif, and Gyeongsang Basin. This feature may reflect the isotopic compositions of plutonic rocks and basements in this area, which are characterized by relatively low values around zero permil. [source]


Geo,tectonic Position of Tin Polymetallic Mineralization Zone in the Southern Da Hinggan Mountains Area, Inner Mongolia, China: An Introduction to This Special Issue

RESOURCE GEOLOGY, Issue 4 2001
Shihua SUN
Abstract: As a part of the main activities of Japan-China technical cooperation project, a test survey area, approximately 5,000 km2, was established for the implement of its geological and geochemical research program. A major mineralization zone called Huanggang,Ganzhuermiao,Wulanhaote Sn-Cu polymetallic mineralization zone is recognized in the southern Da Hinggan Mountains area. The southern half of this zone is known as the sole Sn-mineralization zone in North China. The survey area lies in this prominent zone. As the most of the papers presented in this issue have concerns to the geology and mineralization in this survey area, this report was prepared to introduce geo-tectonic situation of the Sn-Cu polymetallic mineralization zone in the Inner Mongolia orogenic belt. The belt is divided into four tectonic facies (from NW to SE); I: Wuliyasitai volcano-plutonic zone, II: Hegenshan ophiolite mélange zone, III: Sunitezuoqi volcano-plutonic zone, IV: Wenduermiao ophiolite mélange zone. The subject Sn-Cu polymetallic mineralization zone is situated in the southeastern part of the Sunitezuoqi magmatic zone. About this Sunitezuoqi magmatic zone, three geo-tectonic characteristics are pointed out. In late Carboniferous to early Permian period, subduction of Hegenshan oceanic crust occurred, which accelerated volcano-plutonic activities and brought about basic to intermediate volcanic rocks of tholeiitic to calc-alkaline series represented by Dashizhai Group in the Sunitezuoqi magmatic zone. Late Jurassic to early Cretaceous acidic rocks representing the most culminated volcanism and plutonism in Mesozoic era in the Da Hinggan Moutains area are distributed very extensively in and around the Sn-Cu polymetallic mineralization zone. The Proterozoic metamorphic basement rocks called Xilinhaote complex are distributed close to the mineralized area in the Sunitezuoqi magmatic zone. Although the real mineralization was known associated with Mesozoic acidic to intermediate volcano-plutonic activities, it is thought that the lower Permian Dashizhai volcanic rocks and pre-Cambrian basement rocks might have played certain significant role in the process respectively of extraction of elements and formation of the magma favorable for such mineralization in the Sunitezuoqi magmatic zone. It would be necessary to give further considerations to these three geological units in relation to the Sn-Cu polymetallic mineralization. [source]


Provenance of siliciclastic and hybrid turbiditic arenites of the Eocene Hecho Group, Spanish Pyrenees: implications for the tectonic evolution of a foreland basin

BASIN RESEARCH, Issue 2 2010
M. A. Caja
ABSTRACT The Eocene Hecho Group turbidite system of the Aínsa-Jaca foreland Basin (southcentral Pyrenees) provides an excellent opportunity to constrain compositional variations within the context of spatial and temporal distribution of source rocks during tectonostratigraphic evolution of foreland basins. The complex tectonic setting necessitated the use of petrographic, geochemical and multivariate statistical techniques to achieve this goal. The turbidite deposits comprise four unconformity-bounded tectonostratigraphic units (TSU), consisting of quartz-rich and feldspar-poor sandstones, calclithites rich in extrabasinal carbonates and hybrid arenites dominated by intrabasinal carbonates. The sandstones occur exclusively in TSU-2, whereas calclithites and hybrid arenites occur in the overlying TSU-3, TSU-4 and TSU-5. The calclithites were deposited at the base of each TSU and hybrid arenites in the uppermost parts. Extrabasinal carbonate sources were derived from the fold-and-thrust belt (mainly Cretaceous and Palaeocene limestones). Conversely, intrabasinal carbonate grains were sourced from foramol shelf carbonate factories. This compositional trend is attributed to alternating episodes of uplift and thrust propagation (siliciclastic and extrabasinal carbonates supplies) and subsequent episodes of development of carbonate platforms supplying intrabasinal detrital grains. The quartz-rich and feldspar-poor composition of the sandstones suggests derivation from intensely weathered cratonic basement rocks during the initial fill of the foreland basin. Successive sediments (calclithites and hybrid arenites) were derived from older uplifted basement rocks (feldspar-rich and, to some extent, rock fragments-rich sandstones), thrust-and-fold belt deposits and from coeval carbonate platforms developed at the basin margins. This study demonstrates that the integration of tectono-stratigraphy, petrology and geochemistry of arenites provides a powerful tool to constrain the spatial and temporal variation in provenance during the tectonic evolution of foreland basins. [source]


The structural evolution of the Halten Terrace, offshore Mid-Norway: extensional fault growth and strain localisation in a multi-layer brittle,ductile system

BASIN RESEARCH, Issue 2 2010
N. Marsh
ABSTRACT Tectonic subsidence in rift basins is often characterised by an initial period of slow subsidence (,rift initiation') followed by a period of more rapid subsidence (,rift climax'). Previous work shows that the transition from rift initiation to rift climax can be explained by interactions between the stress fields of growing faults. Despite the prevalence of evaporites throughout the geological record, and the likelihood that the presence of a regionally extensive evaporite layer will introduce an important, sub-horizontal rheological heterogeneity into the upper crust, there have been few studies that document the impact of salt on the localisation of extensional strain in rift basins. Here, we use well-calibrated three-dimensional seismic reflection data to constrain the distribution and timing of fault activity during Early Jurassic,Earliest Cretaceous rifting in the Åsgard area, Halten Terrace, offshore Mid-Norway. Permo-Triassic basement rocks are overlain by a thick sequence of interbedded halite, anhydrite and mudstone. Our results show that rift initiation during the Early Jurassic was characterised by distributed deformation along blind faults within the basement, and by localised deformation along the major Smørbukk and Trestakk faults within the cover. Rift climax and the end of rifting showed continued deformation along the Smørbukk and Trestakk faults, together with initiation of new extensional faults oblique to the main basement trends. We propose that these new faults developed in response to salt movement and/or gravity sliding on the evaporite layer above the tilted basement fault blocks. Rapid strain localisation within the post-salt cover sequence at the onset of rifting is consistent with previous experimental studies that show strain localisation is favoured by the presence of a weak viscous substrate beneath a brittle overburden. [source]


Uplift, exhumation and precipitation: tectonic and climatic control of Late Cenozoic landscape evolution in the northern Sierras Pampeanas, Argentina

BASIN RESEARCH, Issue 4 2003
Edward R. Sobel
Deciphering the evolution of mountain belts requires information on the temporal history of both topographic growth and erosion. The exhumation rate of a mountain range undergoing shortening is related to the erodability of the uplifting range as well as the efficiency of erosion, which partly depends on the available precipitation. Young, rapidly deposited sediments have low thermal conductivity and are readily eroded, in contrast to underlying resistant basement rocks that have a higher thermal conductivity. Apatite fission-track thermochronology can quantify cooling; thermal models constrain the relationship between this cooling and exhumation. By utilizing geological relations for a datum, we can examine the evolution of rock uplift, surface uplift and exhumation. In the northern Sierras Pampeanas of Argentina, a young sedimentary basin that overlay resistant crystalline basement prior to rapid exhumation provides an ideal setting to examine the effect of contrasting thermal and erosional regimes. There, tectonically active reverse-fault-bounded blocks partly preserve a basement peneplain at elevations in excess of 4500 m. Prior to exhumation, the two study areas were covered by 1000 and 1600 m of recently deposited sediments; this sequence begins with shallow marine deposits immediately overlying the regional erosion surface. Apatite fission-track data were obtained from vertical transects in the Calchaquíes and Aconquija ranges. At Cumbres Calchaquíes, erosion leading to the development of the peneplain commenced in the Cretaceous, probably as a result of rift-shoulder uplift. In contrast, Sierra Aconquija cooled rapidly between 5.5 and 4.5 Myr. At the onset of this rapid exhumation, the sediment was quickly removed, causing fast cooling, but relatively slow rates of surface uplift. Syntectonic conglomerates were produced when faulting exposed resistant bedrock; this change in rock erodability led to enhanced surface uplift rates, but decreased exhumation rates. The creation of an orographic barrier after the range had attained sufficient elevation further decreased exhumation rates and increased surface uplift rates. Differences in the magnitude of exhumation at the two transects are related to both differences in the thickness of the sedimentary basin prior to exhumation and differences in the effective precipitation due to an orographic barrier in the foreland and hence differences in the magnitude of headward erosion. [source]


Insulating effect of coals and organic rich shales: implications for topography-driven fluid flow, heat transport, and genesis of ore deposits in the Arkoma Basin and Ozark Plateau

BASIN RESEARCH, Issue 2 2002
J.A. Nunn
ABSTRACT Sedimentary rocks rich in organic matter, such as coal and carbonaceous shales, are characterized by remarkably low thermal conductivities in the range of 0.2,1.0 W m,1 °C,1, lower by a factor of 2 or more than other common rock types. As a result of this natural insulating effect, temperature gradients in organic rich, fine-grained sediments may become elevated even with a typical continental basal heat flow of 60 mW m,2. Underlying rocks will attain higher temperatures and higher thermal maturities than would otherwise occur. A two-dimensional finite element model of fluid flow and heat transport has been used to study the insulating effect of low thermal conductivity carbonaceous sediments in an uplifted foreland basin. Topography-driven recharge is assumed to be the major driving force for regional groundwater flow. Our model section cuts through the Arkoma Basin to Ozark Plateau and terminates near the Missouri River, west of St. Louis. Fluid inclusions, organic maturation, and fission track evidence show that large areas of upper Cambrian rocks in southern Missouri have experienced high temperatures (100,140 °C) at shallow depths (< 1.5 km). Low thermal conductivity sediments, such as coal and organic rich mudstone were deposited over the Arkoma Basin and Ozark Plateau, as well as most of the mid-continent of North America, during the Late Palaeozoic. Much of these Late Palaeozoic sediments were subsequently removed by erosion. Our model results are consistent with high temperatures (100,130 °C) in the groundwater discharge region at shallow depths (< 1.5 km) even with a typical continental basal heat flow of 60 mW m,2. Higher heat energy retention in basin sediments and underlying basement rocks prior to basin-scale fluid flow and higher rates of advective heat transport along basal aquifers owing to lower fluid viscosity (more efficient heat transport) contribute to higher temperatures in the discharge region. Thermal insulation by organic rich sediments which traps heat transported by upward fluid advection is the dominant mechanism for elevated temperatures in the discharge region. This suggests localized formation of ore deposits within a basin-scale fluid flow system may be caused by the juxtaposition of upward fluid discharge with overlying areas of insulating organic rich sediments. The additional temperature increment contributed to underlying rocks by this insulating effect may help to explain anomalous thermal maturity of the Arkoma Basin and Ozark Plateau, reducing the need to call upon excessive burial or high basal heat flow (80,100 mW m,2) in the past. After subsequent uplift and erosion remove the insulating carbonaceous layer, the model slowly returns to a normal geothermal gradient of about 30 °C km,1. [source]


Structural Characteristics and Formation Mechanism in the Micangshan Foreland, South China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2009
Huaming XU
Abstract: Lying at the junction of the Dabashan, Longmenshan and Qinling mountains, the Micangshan Orogenic Belt coupled with a basin is a duplex structure and back-thrust triangular belt with little horizontal displacement, small thrust faults and continuous sedimentary cover. On the basis of 3D seismic data, and through sedimentary and structural research, the Micangshan foreland can be divided into five subbelts, which from north to south are: basement thrust, frontal thrust, foreland depression-back-thrust triangle, foreland fold belt or anticline belt, and the Tongjiang Depression. Along the direction of strike from west to east, the arcuate structural belt of Micangshan can be divided into west, middle and east segments. During the collision between the Qinling and Yangtze plates, the Micangshan Orogenic Belt was subjected to the interaction of three rigid terranes: Bikou, Foping, and Fenghuangshan (a.k.a. Ziyang) terranes. The collision processes of rigid terranes controlled the structural development of the Micangshan foreland, which are: (a) the former collision between the Micangshan-Hannan and Bikou terranes forming the earlier rudiments of the structure; and (b) the later collision forming the main body of the structural belt. The formation processes of the Micangshan Orogenic Belt can be divided into four stages: (1) in the early stage of the Indosinian movement, the Micangshan-Hannan Rigid Terrane was jointed to the Qinling Plate by the clockwise subduction of the Yangtze Plate toward the Qinling Plate; (2) since the late Triassic, the earlier rudiments of the Tongnanba and Jiulongshan anticlines and corresponding syncline were formed by compression from different directions of the Bikou, Foping and Micangshan-Hannan terranes; (3) in the early stage of the Himalayan movement, the Micangshan-Hannan Terrane formed the Micangshan Nappe torwards the foreland basin and the compression stresses were mainly concentrated along both its flanks, whereas the Micangshan-Hannan Terrane wedged into the Qinling Orogenic Belt with force; (4) in the late stage of the Himalayan movement, the main collision of the Qinling Plate made the old basement rocks of the terrane uplift quickly, to form the Micangshan Orogenic Belt. The Micangshan foreland arcuate structure was formed due to the non-homogeneity of terrane movement. [source]