Temperature Window (temperature + window)

Distribution by Scientific Domains


Selected Abstracts


Growth of single-grain GdBa2Cu3O7-x superconductors by top seeded infiltration and growth technique

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 3 2010
Guo-Zheng Li
Abstract The top seeded infiltration and growth technique (TSIG) is an effective way for the preparation of bulk REBa2Cu3O7-x (RE-123, where RE denotes rare earth) with finely dispersed RE2BaCuO5 (RE-211) particles compared to the conventional melt growth (MG) method. The nucleation temperature and the ending growth temperature are the most important parameters need to be optimized during the preparation of RE-123 bulks by the TSIG process. In this paper, the effects of these parameters on the growth of single-grain GdBa2Cu3O7-x (GdBCO) superconductors have been investigated experimentally. It is found that the temperature for the growth of single-grain GdBCO is in the region between 1040 °C and 1015 °C. In addition, the relation between growth rate and supercooling has been investigated in detail. The combined techniques of SEM and EDS were used to study the microstructure of the samples grown at different temperatures. Based on this, a two-step slow cooling method during the crystallization process is proposed for the fabrication of RE-123 bulks. Finally, the single-grain GdBCO samples of the diameters 20 mm and 30 mm were fabricated successfully by the TSIG technique, with the slow-cooling process in the temperature window 1030 °C,1020 °C for 60 h and 100 h respectively. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Heteroleptic Guanidinate- and Amidinate-Based Complexes of Hafnium as New Precursors for MOCVD of HfO2

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 11 2010
Ke Xu
Abstract The synthesis and characterization of four new heteroleptic complexes [Hf{,2 -(iPrN)2CNMe2}2Cl2] (1), [Hf{,2 -(iPrN)2CNMe2}2Me2] (2), [Hf{,2 -(iPrN)2CMe}2Cl2] (3), and [Hf{,2 -(iPrN)2CMe}2Me2] (4) are reported. All the complexes were characterized by spectroscopic methods, while compounds 1,3 were further examined by single-crystal X-ray diffraction, revealing that the complexes are monomers with the hafnium center in a distorted octahedral geometry. The thermal properties of the chlorine-free complexes (2, 4) were examined to determine their suitability for metalorganic chemical vapor deposition (MOCVD) applications, and compound 2 showed good volatility and thermal stability. On the basis of these results, compound 2 was selected for MOCVD of HfO2 with oxygen as oxidant. Depositions were carried out on Si(100) substrates in the temperature range 300,700 °C. The as-deposited HfO2 films crystallized in the monoclinic phase at temperatures above 500 °C, and the composition analysis determined by Rutherford back-scattering (RBS) and X-ray photoelectron spectroscopy (XPS) revealed that the films were stoichiometric and free of carbon. Thus, alkylguanidinatohafnium complex 2 is a promising precursor for growing HfO2 films in a wide temperature range with the desired stoichiometry, because of its adequate volatility, sufficient temperature window between vaporization and decomposition, as well as its ability to decompose cleanly in the presence of oxygen. [source]


Amphibolites with staurolite and other aluminous minerals: calculated mineral equilibria in NCFMASH

JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2000
Arnold
Amphibolite facies mafic rocks that consist mainly of hornblende, plagioclase and quartz may also contain combinations of chlorite, garnet, epidote, and, more unusually, staurolite, kyanite, sillimanite, cordierite and orthoamphiboles. Such assemblages can provide tighter constraints on the pressure and temperature evolution of metamorphic terranes than is usually possible from metabasites. Because of the high variance of most of the assemblages, the phase relationships in amphibolites depend on rock composition, in addition to pressure, temperature and fluid composition. The mineral equilibria in the Na2O,CaO,FeO,MgO,Al2O3,SiO2,H2O (NCFMASH) model system demonstrate that aluminium content is critical in controlling the occurrence of assemblages involving hornblende with aluminous minerals such as sillimanite, kyanite, staurolite and cordierite. Except in aluminous compositions, these assemblages are restricted to higher pressures. The iron to magnesium ratio (XFe), and to a lesser extent, sodium to calcium ratio, have important roles in determining which (if any) of the aluminous minerals occur under particular pressure,temperature conditions. Where aluminous minerals occur in amphibolites, the P,T,X dependence of their phase relationships is remarkably similar to that in metapelitic rocks. The mineral assemblages of Fe-rich amphibolites are typically dominated by garnet- and staurolite-bearing assemblages, whereas their more Mg-rich counterparts contain chlorite and cordierite. Assemblages involving staurolite,hornblende can occur over a wide range of pressures (4,10 kbar) at temperatures of 560,650 °C; however, except in the more aluminous, iron-rich compositions, they occupy a narrow pressure,temperature window. Thus, although their occurrence in ,typical' amphibolites may be indicative of relatively high pressure metamorphism, in more aluminous compositions their interpretation is less straightforward. [source]


NOx storage and reduction with propylene on Pt/BaO/alumina

AICHE JOURNAL, Issue 10 2004
Rachel L. Muncrief
Abstract An experimental study was carried out of periodically operated NOx (NO + NO2) storage and reduction on a model Pt/BaO/Al2O3 catalyst powder. The effect of the reductant (propylene) injection policy on time-averaged NOx conversion was evaluated in terms of feed composition and temperature, reductant pulse duration, and overall cycle time. Conditions giving time-averaged NOx conversions exceeding 90% were identified. The reductant-to-oxidant ratio during the injection and the total cycle time are both found to be critical factors to achieve high conversion. The time-averaged conversion is bounded above and below by the steady-state conversions obtained with feeds having the same compositions as that during the rich and lean part of the cycle, respectively. For a fixed supply of propylene, short pulses of high concentration are much more effective than longer pulses of reduced concentration. The NOx conversion achieves a maximum value at an intermediate overall cycle time when the propylene pulse of fixed duty fraction is net reducing. High conversions are sustained over a wide temperature window (200,400°C). A simple storage,reduction cycle is proposed that elucidates the main findings in the study. The key factor for high NOx conversion is the temporal production of oxygen-deficient conditions coupled with high catalyst temperatures, both resulting from the intermittent catalytic oxidation of propylene. © 2004 American Institute of Chemical Engineers AIChE J, 50: 2526,2540, 2004 [source]


Stereoregular P(MMA)-clay nanocomposites by metallocene catalysts: In situ synthesis and stereocomplex formation

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 13 2007
Wesley R. Mariott
Abstract This contribution reports the synthesis and characterization of stereochemically controlled, as well as crystalline stereocomplex, P(MMA)-clay nanocomposites using metallocene complexes and alane-intercalated clay activators. The ligand elimination and exchange reactions involving Lewis acids E(C6F5)3 (E = Al, B) and an organically modified montmorillonite clay were employed to synthesize the alane-intercalated clay activators. When combined with dimethyl metallocenes of various symmetries, these clay activators brought about efficient MMA polymerizations leading to in situ polymerized, stereochemically controlled P(MMA)-intercalated clay nanocomposites. The most noticeable thermal property enhancement observed for the clay nanocomposite P(MMA), when compared with the pristine P(MMA) having similar molecular weight and stereomicrostructure, has a considerable increase in Tg (,10 °C). Mixing of dilute THF solutions of two diastereomeric nanocomposites in a 1:2 isotactic to syndiotactic ratio, followed by reprecipitation or crystallization procedures, yielded unique double-stranded helical stereocomplex P(MMA)-clay nanocomposites with a predominantly exfoliated clay morphology. Remarkably, the resulting crystalline stereocomplex P(MMA) matrix is resistant to the boiling-THF extraction and its clay nanocomposites exhibit high Tm of 201 to 210 °C. Furthermore, the stereocomplex P(MMA)-clay nanocomposite shows a one-step, narrow decomposition temperature window and a single, high maximum rate decomposition temperature of 377 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2581,2592, 2007 [source]


Synthesis of III-nitride microcrystals using metal-EDTA complexes

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 7 2007
Y. H. Liu
Abstract A novel method, using metal ethylenediamine tetraacetic acid (EDTA) complexes as starting materials, is proposed to synthesize III-nitride microcrystals. Ga (Zn, Ga)-EDTA·NH4 and In-EDTA·NH4 complexes were reacted with NH3 in the temperature range of 1020,1150 °C and 300,620 °C, respectively. SEM observation and X-ray diffraction patterns show that pure phase hexagonal GaN and InN are obtained. The CL peak intensity of GaN increases as the synthesis temperature increases up to 1100 °C. The dependence of CL peak intensity on Zn doping content indicates good doping control. For InN synthesis, the temperature window is very narrow and the reaction evolves from In2O3 to InN. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Experimental study on gasification characteristics and slagging behavior of Chinese typical high ash fusion temperature coal in lab scale downflow gasifier

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2010
Xiaojiang Wu
Abstract In order to extend the applicability of entrained flow gasification technology by using Chinese high ash fusion temperature (AFT) coal with dry ash extraction, gasification characteristics and slagging behavior of Chinese high AFT coal were studied in a lab scale downflow gasifier. The results showed that under this experimental condition, the optimum temperature window which is suitable for dry ash extraction with high AFT coal ranges from 1573 to 1623 K, as well as the corresponding optimum O2/coal mass ratio ranges from 0.93 to 1.13. The cold gas efficiency and carbon conversion are around 42 and 90%, respectively in this experiment. The slag on the bottom of the gasifier and in the cyclone existed, on the whole, as solid except that some small parts were melted with several micrometers in diameter, while the slag in the bag filter had remained unmelted when continue operating at an optimum condition for 1.5 h. Due to the small percentage of melted parts in the slag, the tendency of plugging is small and the problems of plugging can be avoided at the exit of gasifier by gasifying Chinese high AFT coal at around 1623 K. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Influence of NO on the Reduction of NO2 with CO over Pt/SiO2 in the Presence of O2

CHINESE JOURNAL OF CHEMISTRY, Issue 4 2007
Ming-Shi Li
Abstract Reduction of NO2 with CO in the presence of NO and excess oxygen, a model mixture for flue gas, over a 0.1% Pt/SiO2 catalyst was studied. The related reaction mechanisms, such as oxidation of CO and NO, were discussed. It was found that there was a narrow temperature window (180,190 °C) for the reduction of NO2 by CO. When the temperature was lower than the lower limit of the window, the reduction hardly occurred, while when the temperature was higher than the upper limit of the window, the direct oxidation of CO by O2 occurred and thereby NO2 could not be effectively reduced by CO. The presence of NO shifted the window to higher temperatures owing to the inhibition effect of NO on the activation of O2 on Pt, which made it possible to reduce NO2 by CO in flue gas. [source]