Temperature Profiles (temperature + profile)

Distribution by Scientific Domains
Distribution within Chemistry


Selected Abstracts


Time and Temperature Profile of Catheter Cryoablation of Right Septal and Free Wall Accessory Pathways in Children

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 4 2008
JONATHAN R. KALTMAN M.D.
Introduction: The overall acute success with cryoablation for accessory pathways (APs) has been reported to be lower than with radiofrequency ablation. Generally, prior cryomapping (limited to ,30°C) has been used to test for loss of AP conduction and absence of atrioventricular (AV) node impairment. However, the temperature at which loss of AP conduction occurs may be variable. The purpose of this study was to evaluate the time and temperature profile at which loss of AP conduction occurs. Methods and Results: A retrospective study evaluated 25 patients (mean age 13.3 ± 3.6 years) who underwent cryoablation for right-sided APs (22 manifest/3 concealed). Direct cryoablation (,80°C) without cryomapping was performed using a "time to success" strategy. If AP conduction was successfully interrupted within 25 seconds of the onset of cryoablation, the lesion was continued for 240 seconds; otherwise it was terminated and further mapping was performed. Cryoablation was successful in 24/25 (96%) patients. Temperature at loss of AP conduction was ,66.2 ±,16.7°C (range +32 to ,84°C) with conduction block at temperatures lower than ,30°C for all but 3 APs. Critical time to success (interval from cryoadherence to loss of AP conduction) was significantly shorter for permanently successful cryolesions, compared with transiently successful lesions (6.3 ± 4.1 vs. 11.2 ± 2.2 sec; P < 0.001). There were no major complications. Conclusions: Cryothermal energy required for successful ablation may be variable and restricting test applications to ,30°may limit its efficacy. A "time to success" strategy may improve outcome of cryoablation for right-sided APs in children without compromising safety. [source]


Temperature Profiles in a Cylindrical Model Food During Pulsed Microwave Heating

JOURNAL OF FOOD SCIENCE, Issue 7 2001
H.W. Yang
ABSTRACT: Cylindrical 2%-agar gel samples were heated by pulsed and continuous microwave applications. The total microwave application time of 3 min was maintained for all experiments. Sample temperature was measured at various depths along the radial dimension to experimentally determine the internal temperature profile as a function of heating time. A local hot spot was observed at the center portion of the sample during the continuous microwave application. This hot spot was less significant during pulsed microwave applications, especially when longer intermittent power-off times were employed. An implicit finite-difference model was used to estimate temperature profiles within the sample during microwave heating. The estimated temperature profiles matched the experimental values well. [source]


Geothermal bryophyte habitats in the South Sandwich Islands, maritime Antarctic

JOURNAL OF VEGETATION SCIENCE, Issue 4 2006
P. Convey
Ochyraet al. (in press) for mosses, Bednarek-Ochyra et al. (2000) for liverworts, Øvstedal & Lewis Smith (2001) for lichens Abstract Question: How does geothermal activity influence terrestrial plant colonization, species composition and community development in the Antarctic? Location: South Sandwich Islands, maritime Antarctic. Methods: Bryophytes were documented during a biological survey of the archipelago in January and February 1997. Particular attention was given to sites under current or recent influence of geothermal activity. Temperature profiles obtained across defined areas of activity on several islands were linked with the presence of specific bryophytes. Results: Greatest bryophyte richness was associated with geothermally influenced ground. Of 35 moss and nine liverwort species recorded, only four mosses were never associated with heated ground, while eight of the liverworts and 50% of the mosses were found only on actively or recently heated ground. Some species occur in unheated sites elsewhere in the maritime Antarctic, but were absent from such habitats on the South Sandwich Islands. Several species occurred in distinct zones around fumaroles. Maximum temperatures recorded within the upper 0.5 cm of the vegetation surface were 40 - 47 °C, with only Campylopus introflexus tolerating such temperatures. Maximum temperatures 2.5 or 5 cm below the vegetation surface of this moss reached 75 °C. Other bryophytes regularly present in zoned vegetation included the mosses Dicranella hookeri, Sanionia georgico-uncinata, Pohlia nutans and Notoligotrichum trichodon, and the liverworts Cryptochila grandiflora and Marchantia berteroana. Surface temperatures of 25 - 35 °C and subsurface temperatures of 50 - 60 °C were recorded in these species. Conclusions: These exceptional plant communities illustrate the transport of viable propagules into the Antarctic. Individually ephemeral in nature, the longer term existence of geothermal habitats on islands along the Scotia Arc may have provided refugia during periods of glacial expansion, facilitating subsequent recolonization of Antarctic terrestrial habitats. [source]


Morphology profiles generated by temperature gradient in PMMA modified epoxy system

POLYMER ENGINEERING & SCIENCE, Issue 11 2001
P. M. Stefani
A diglycidyl ether of bisphenol-A (DGEBA) epoxy resin was modified with 15 wt% of poly(methylmethacrylate) (PMMA) and cured with a stoichiometric amount of 4,4,-diamino diphenyl methane (DDM). The reactive mixture was cured in a heated mold with different gradients of temperature. Temperature profiles in the mold were imposed by generation of a heat flux from the base, supported on a hot plate, and the top, cooled with water; they were measured along the mold. Depending on the thermal history in each position of the mold, the competition between the phase-separation process and reaction kinetics produces opaque or transparent zones. Phase separation can also occur in the postcure process while the gelation does not take place before. Therefore, a thermoset plate with gradient of morphology and properties was obtained. Mass fractions of PMMA dissolved in the matrix were calculated with the Fox equation from glass transition temperatures measured along the mold. They were related to morphologies developed during curing. The superposition of the phase diagrams with the conversion-temperature trajectories during cure permitted an explanation of the morphology gradients generated. [source]


Optimization of Operating Temperature for Continuous Immobilized Glucose Isomerase Reactor with Pseudo Linear Kinetics

ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 5 2004
N.M. Faqir
Abstract In this work, the optimal operating temperature for the enzymatic isomerization of glucose to fructose using a continuous immobilized glucose isomerase packed bed reactor is studied. This optimization problem describing the performance of such reactor is based on reversible pseudo linear kinetics and is expressed in terms of a recycle ratio. The thermal deactivation of the enzyme as well as the substrate protection during the reactor operation is considered. The formulation of the problem is expressed in terms of maximization of the productivity of fructose. This constrained nonlinear optimization problem is solved using the disjoint policy of the calculus of variations. Accordingly, this method of solution transforms the nonlinear optimization problem into a system of two coupled nonlinear ordinary differential equations (ODEs) of the initial value type, one equation for the operating temperature profile and the other one for the enzyme activity. The ODE for the operating temperature profile is dependent on the recycle ratio, operating time period, and the reactor residence time as well as the kinetics of the reaction and enzyme deactivation. The optimal initial operating temperature is selected by solving the ODEs system by maximizing the fructose productivity. This results into an unconstrained one-dimensional optimization problem with simple bounds on the operating temperature. Depending on the limits of the recycle ratio, which represents either a plug flow or a mixed flow reactor, it is found that the optimal temperature of operation is characterized by an increasing temperature profile. For higher residence time and low operating periods the residual enzyme activity in the mixed flow reactor is higher than that for the plug flow reactor, which in turn allows the mixed flow reactor to operate at lower temperature than that of the plug flow reactor. At long operating times and short residence time, the operating temperature profiles are almost the same for both reactors. This could be attributed to the effect of substrate protection on the enzyme stability, which is almost the same for both reactors. Improvement in the fructose productivity for both types of reactors is achieved when compared to the constant optimum temperature of operation. The improvement in the fructose productivity for the plug flow reactor is significant in comparison with the mixed flow reactor. [source]


Modeling multi-stage decomposition of cotton fabrics considering char oxidation in the presence of oxygen

FIRE AND MATERIALS, Issue 8 2009
F. L. Zhu
Abstract A theoretical model, describing thermal degradation behavior of cotton fabrics that exposed to a constant radiant heat flux, is proposed in the paper. The model describes thermal and oxidative degradation of cotton fabric under the oxygen-containing atmosphere and considers pseudo-bi-component separate-stage kinetic process. Both exothermic and endothermic reactions are included in the decomposition process. At present, gas phase oxidation reactions are not included. Comparison with experimental results demonstrates that the predictions of the mass loss rate and temperature profile with these cotton fabrics are in agreement with the experiment. Effects of thermal radiation and ambient oxygen concentration on decomposition have also been investigated. The gas phase temperature is also predicted by the present numerical model. Results from numerical model will help contribute to a better understanding of the ignition mechanism of flame-resistant cotton fabrics used for fire safety garments. Copyright © 2009 John Wiley & Sons, Ltd. [source]


A pyrolysis model of charring materials considering the effect of ambient oxygen concentration

FIRE AND MATERIALS, Issue 7 2007
W. G. Weng
Abstract In this paper, a one-dimensional integral model is developed to describe the processes involved in the transient pyrolysis of a semi-infinite charring material subjected to a constant radiant heat flux. In this model, a special factor that shows the effect on pyrolysis is considered, i.e. under the oxygen-containing atmosphere. The model tracks the char layer depth, thermal penetration depth, surface temperature and mass loss rate. Comparison with experimental results demonstrates that the predictions of the mass loss rate and temperature profile within the charring material are in good agreement with the experiment. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Convection in the Earth's core driven by lateral variations in the core,mantle boundary heat flux

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2000
Steven John Gibbons
Summary Moving core fluid maintains an isothermal core,mantle boundary (CMB), so lateral variations in the CMB heat flow result from mantle convection. Such variations will drive thermal winds, even if the top of the core is stably stratified. These flows may contribute to the magnetic secular variation and are investigated here using a simple, non-magnetic numerical model of the core. The results depend on the equatorial symmetry of the boundary heat flux variation. Large-scale equatorially symmetric (ES) heat flux variations at the outer surface of a rapidly rotating spherical shell drive deeply penetrating flows that are strongly suppressed in stratified fluid. Smaller-scale ES heat flux variations drive flows less dominated by rotation and so less inhibited by stratification. Equatorially anti-symmetric flux variations drive flows an order of magnitude less energetic than those driven by ES patterns but, due to the nature of the Coriolis force, are less suppressed by stratification. The response of the rotating core fluid to a general CMB heat flow pattern will then depend strongly on the subadiabatic temperature profile. Imposing a lateral heat flux variation linearly related to a model of seismic tomography in the lowermost mantle drives flow in a density stratified fluid that reproduces some features found in flows inverted from geomagnetic data. [source]


Modelling snowpack surface temperature in the Canadian Prairies using simplified heat flow models

HYDROLOGICAL PROCESSES, Issue 18 2005
Purushottam Raj Singh
Abstract Three practical schemes for computing the snow surface temperature Ts, i.e. the force,restore method (FRM), the surface conductance method (SCM), and the Kondo and Yamazaki method (KYM), were assessed with respect to Ts retrieved from cloud-free, NOAA-AVHRR satellite data for three land-cover types of the Paddle River basin of central Alberta. In terms of R2, the mean Ts, the t -test and F -test, the FRM generally simulated more accurate Ts than the SCM and KYM. The bias in simulated Ts is usually within several degrees Celsius of the NOAA-AVHRR Ts for both the calibration and validation periods, but larger errors are encountered occasionally, especially when Ts is substantially above 0 °C. Results show that the simulated Ts of the FRM is more consistent than that of the SCM, which in turn was more consistent than that of the KYM. This is partly because the FRM considers two aspects of heat conduction into snow, a stationary-mean diurnal (sinusoidal) temperature variation at the surface coupled to a near steady-state ground heat flux, whereas the SCM assumes a near steady-state, simple heat conduction, and other simplifying assumptions, and the KYM does not balance the snowpack heat fluxes by assuming the snowpack having a vertical temperature profile that is linear. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Impact of spatial variations of land surface parameters on regional evaporation: a case study with remote sensing data

HYDROLOGICAL PROCESSES, Issue 9 2001
Hussein O. Farah
Abstract Most precipitation in watersheds is consumed by evaporation, thus techniques to appraise regional evaporation are important to assess the availability of water resources. Many algorithms to estimate evaporation from remotely sensed spectral data have been developed in the recent past. In addition to differences in the physical parameterization of surface fluxes, these algorithms have different solutions for describing spatial variations of the parameters in the soil,vegetation,atmosphere,transfer (SVAT) continuum. In this study, the necessity to spatially distinguish SVAT parameters for computing surface heat fluxes is analysed for the Naivasha watershed in the Kenyan Rift Valley. Landsat Thematic Mapper (TM) spectral data have been used to first delineate the watershed into 15 hydrological units using surface temperature, normalized difference vegetation index and surface albedo as attributes. Thereafter, semi-empirical relationships between these TM-based parameters and other SVAT parameters have been applied to compute the spatial variation of SVAT parameters and the associated evaporation from the different hydrological units. The impact of using watershed-constant or watershed-distributed SVAT parameters on the fluxes is analysed. The determination of watershed averaged evaporation with area-aggregated SVAT parameters is feasible without significant loss of accuracy. Distributed evaporation in heterogeneous watersheds, however, can be investigated only with remote sensing flux algorithms that can account for spatially variable air temperature, surface roughness, surface albedo and the stability correction of the temperature profile due to buoyancy. Erroneous results can be expected if area-aggregated SVAT parameters are used to calculate local evaporation. As most of the recently developed remote sensing flux algorithms are based on areal constant SVAT parameters, direct applications in watersheds are still limited. Copyright © 2001 John Wiley & Sons, Ltd. [source]


The lattice Boltzmann method and the finite volume method applied to conduction,radiation problems with heat flux boundary conditions

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 2 2009
Bittagopal Mondal
Abstract This article deals with the implementation of the lattice Boltzmann method (LBM) in conjunction with the finite volume method (FVM) for the solution of conduction,radiation problems with heat flux and temperature boundary conditions. Problems in 1-D planar and 2-D rectangular geometries have been considered. The radiating,conducting participating medium is absorbing, emitting and scattering. In the 1-D planar geometry, the south boundary is subjected to constant heat flux, while in the 2-D geometry the south and/or the north boundary is at constant heat flux condition. The remaining boundaries are at prescribed temperatures. The energy equation is solved using the LBM and the radiative information for the same is computed using the FVM. In the direct method, by prescribing temperatures at the boundaries, the temperature profile and heat flux are calculated. The computed heat flux values are imposed at the boundaries to establish the correctness of the numerical code in the inverse method. Effects of various parameters such as the extinction coefficient, the scattering albedo, the conduction,radiation parameter, the boundary emissivity and the total heat flux and boundary temperatures are studied on the distributions of temperature, radiative and conductive heat fluxes. The results of the LBM in conjunction with the FVM have been found to compare very well with those available in the literature. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Detailed chemical kinetic modeling of pyrolysis of ethylene, acetylene, and propylene at 1073,1373 K with a plug-flow reactor model

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 4 2008
Koyo Norinaga
This study examines the predictive capability of our recently proposed reaction mechanism (Norinaga and Deutschmann, Ind Eng Chem Res 2007, 46, 3547) for hydrocarbon pyrolysis at varying temperature. The conventional flow reactor experiments were conducted at 8 kPa, over the temperature range 1073,1373 K, using ethylene, acetylene, and propylene as reactants to validate the mechanism. More than 40 compounds were identified and quantitatively analyzed by on- and off-line gas chromatography. The chemical reaction schemes consisting of 227 species and 827 reactions were coupled with a plug-flow reactor model that incorporated the experimentally measured axial temperature profile of the reactor. Comparisons between the computations and the experiments are presented for more than 30 products including hydrogen and hydrocarbons ranging from methane to coronene as a function of temperature. The model can predict the compositions of major products (mole fractions larger than 10,2) in the pyrolysis of three hydrocarbons with satisfactory accuracies over the whole temperature range considered. Mole fraction profiles of minor compounds including polycyclic aromatic hydrocarbons (PAHs) up to three ring systems, such as phenanthrene, anthracene, and phenylnaphthalene, are also fairly modeled. At temperatures lower than 1273 K, larger PAHs were underpredicted and the deviation became larger with decreasing temperature and increasing molecular mass of PAHs, while better agreements were found at temperatures higher than 1323 K. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 199,208, 2008 [source]


Rules-of-thumb of implementing short electric band heaters (length to diameter ratio <1.5) for external heating of pipe flows

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 2 2002
X. D. Chen
Abstract Short electric band heaters (L/Di<1.5) are constructed for the ease of implementation in small scale heating applications. They are usually mounted side-by-side in series along the external wall of a pipe for heating the fluid within the pipe. There are no rules-of-thumb available about designing such a system to achieve good uniformity of the temperature profile at the pipe inner surface beforehand. Non-uniformity can cause preferential fouling at hotter spots. This study focuses on the axial uniformity of heating along a pipe inside which the heated fluid if flowing. The situation has been simplified a great deal in mathematical terms from the corresponding conventional conjugate problem considered previously due to the small temperature rise in the fluid flow through one section of the pipe which is heated by one band heater. Similarity parameter sets have been deduced and verified by numerical simulations. The worst scenario of non-uniformity for such short band heaters, that is when L/Di=1.5, is presented in this paper. This may be used for designing a system to minimize the non-uniformity in terms of choosing the right pipe material, percentage of heater wire coverage in the band heater, etc. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Fibres in the dough influencing freezing and thawing kinetics

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 1 2010
Jelena Filipovic
Summary Three types of commercial fibres were incorporated into the dough formula at the level of 0%, 5% and 10%. Dough freezing/thawing kinetics was determined at ,18 °C and +30 °C, respectively. Fibres type and quantity are influencing the slope of freezing curve not the trend of the freezing curve. Related to the control the presence of fibres in dough prevents the formation of the solid phase. Freezing/thawing process of dough is defined by the Fourier's equation and tested with three approximations. Experimental data correspond the best to unsteady temperature profile, with introduced value of t2 referring to the phase transformation, proved by determination coefficient. At freezing/thawing the highest determination coefficient is experienced with 10% of inulin GR (0.966 and 0.991), and the lowest with 10% of fibrex (0.939 and 0.972). Pertinent data point at the possibility of mathematical interpretation of freezing/thawing processes that is of a particular interest for the bakery practice. [source]


Cohesive-driven particle circulation in the solids conveying zone of a single-screw extruder

ADVANCES IN POLYMER TECHNOLOGY, Issue 2 2008
Michael R. Thompson
Abstract Aspects of heat transfer within the solids conveying zone of a single-screw extruder were studied by using a specially constructed drum testing apparatus. Experiments were conducted with linear low-density polyethylene, polystyrene (PS), and polypropylene (PP) samples by examining their transient temperature profile while the heated drum was stationary or moving. In accordance with classic solids conveying theory, the granular beds of PP and PS remained as plugs while the drum rotated. In such cases, the dominant modes of heat transfer for these systems are conduction through the contact area of a particle and conduction through the interstitial gas. An exception to this behavior was found with PE, in which the bed temperature increased more rapidly while the drum rotated. Visual observations of the bed showed that the particles circulated in the presence of shear and that this complex flow pattern increased in velocity as the drum temperature approached the onset temperature for melting the PE material. With strong correlation between the rate of circulation and the temperature rise in the bed, the movement of particles was assumed to act in a convective heat transfer mode bringing about more uniform heating of the polymer. The circulation phenomenon was attributed to dominant adhesive forces at the particle,drum interface overcoming the cohesive strength of the bulk. © 2009 Wiley Periodicals, Inc. Adv Polym Techn 27:74,88, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20121 [source]


Improved thermal design of a compression mold

ADVANCES IN POLYMER TECHNOLOGY, Issue 2 2007
Maria A. Kuczmarski
Abstract An analysis of the heat transfer in a tool for producing neat resin disks was conducted to determine how to bring about a better agreement between the tool temperature and the applied temperature profile. Using the commercial code FLUENT to investigate the relative effects of heat conduction into the tool and heat loss from the tool by convection, it was shown that convective heat transfer appears more important than conduction in controlling the tool performance. Decreasing the height of the tool was predicted to decrease the heat losses by convection. Redesigning of the tool based on this analysis resulted in the tool experiencing the applied temperature profile. © 2007 Wiley Periodicals, Inc. Adv Polym Techn 26:86,99, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20091 [source]


Time and Temperature Profile of Catheter Cryoablation of Right Septal and Free Wall Accessory Pathways in Children

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 4 2008
JONATHAN R. KALTMAN M.D.
Introduction: The overall acute success with cryoablation for accessory pathways (APs) has been reported to be lower than with radiofrequency ablation. Generally, prior cryomapping (limited to ,30°C) has been used to test for loss of AP conduction and absence of atrioventricular (AV) node impairment. However, the temperature at which loss of AP conduction occurs may be variable. The purpose of this study was to evaluate the time and temperature profile at which loss of AP conduction occurs. Methods and Results: A retrospective study evaluated 25 patients (mean age 13.3 ± 3.6 years) who underwent cryoablation for right-sided APs (22 manifest/3 concealed). Direct cryoablation (,80°C) without cryomapping was performed using a "time to success" strategy. If AP conduction was successfully interrupted within 25 seconds of the onset of cryoablation, the lesion was continued for 240 seconds; otherwise it was terminated and further mapping was performed. Cryoablation was successful in 24/25 (96%) patients. Temperature at loss of AP conduction was ,66.2 ±,16.7°C (range +32 to ,84°C) with conduction block at temperatures lower than ,30°C for all but 3 APs. Critical time to success (interval from cryoadherence to loss of AP conduction) was significantly shorter for permanently successful cryolesions, compared with transiently successful lesions (6.3 ± 4.1 vs. 11.2 ± 2.2 sec; P < 0.001). There were no major complications. Conclusions: Cryothermal energy required for successful ablation may be variable and restricting test applications to ,30°may limit its efficacy. A "time to success" strategy may improve outcome of cryoablation for right-sided APs in children without compromising safety. [source]


COMPLEX METHOD FOR NONLINEAR CONSTRAINED MULTI-CRITERIA (MULTI-OBJECTIVE FUNCTION) OPTIMIZATION of THERMAL PROCESSING

JOURNAL OF FOOD PROCESS ENGINEERING, Issue 4 2003
FERRUH ERDO
ABSTRACT The goal in a multi-objective function optimization problem is to optimize the several objective functions simultaneously. the complex method is a powerful algorithm to find the optimum of a general nonlinear function within a constrained region. the objective of this study was to apply the complex method to two different shapes (a sphere and a finite cylinder) subjected to the same thermal processing boundary conditions to find a variable process temperature profile (decision variable) to maximize the volume-average retention of thiamine. A process temperature range of 5 to 150C was used as an explicit constraint. Implicit constraints were center temperature and accumulated center lethality of the sphere and the finite cylinder. the objective functions for both shapes were combined into a single one using a weighting method. Then, the previously developed complex algorithm was applied using Lexicographic Ordering to order the objective functions with respect to their significance. the results were reported as optimum variable process temperature profiles using the given geometries and objective functions. the thiamine retentions were also compared with a constant process temperature process, and 3.0% increase was obtained in the combined objective function. the results showed that the complex method can be successfully used to predict the optimum variable process temperature profiles in multi-criteria thermal processing problems. [source]


THERMAL PROCESS EVALUATION OF RETORTABLE POUCHES FILLED WITH CONDUCTION HEATED FOOD

JOURNAL OF FOOD PROCESS ENGINEERING, Issue 5 2002
MARCELO CRISTIANINI
ABSTRACT Two models using the finite element technique (FE) and another using an analytical solution to solve the 3-dimensional heat conduction equation for a finite plate were built. FE models were built considering the actual pouch shape and retort temperature profile. Chi-square and regression lines were obtained for each set of temperatures generated by the models against experimental data. A mass average sterilizing value of 9.9 min was estimated when a critical point sterilizing value was at 8.7 min using the 3-Dimensional FE model. Close agreement was found among the three models for heating phase. Using actual retort temperature profile made FE models more accurate than the one using analytical solution, especially for cooling phase. [source]


REDUCED/OXIDIZED GLUTATHIONE INDEX AS A TOOL FOR FOOD MONITORITY OXIDATIVE STRESS DURING EXTRUSION COOKING

JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 3 2001
H. ZIELINSKI
Reduced and oxidized glutathione was assayed in wheat, barley, rye, oats and buckwheat before and after extrusion cooking. The results obtained indicate that GSH/GSSG ratio was decreased from 1.91 and 10.72 for raw oat and buckwheat grains to the 1.13, 1.01, 1.10 and 4.72, 3.89, 3.89 for extruded material, respectively, in temperature used of 120, 160 and 200C. These results indicate that the oxidative stress is least developed during extrusion cooking of oat and buckwheat grains. Wheat and barley grains were more prone to oxidative damage, and the observed decrease of the ratio ranged from 6.84 and 4.89 (wheat cv. Almari and barley cv. Mobek, raw material) to the 1.89 and 2.07 (after extrusion cooking at 200C, respectively). No significance differences were found between two cultivars of wheat and barley being used in the experiment. The most decreased ratio up to five times was found in rye grain extrudates. The extrusion performed under barrel temperature profile of 80,100,120,120,120C caused significant decrease in GSH content when compared to raw material. The next higher barrel temperature profiles of 100,130,160,160,120C and 120,160,200,200,120C led to further GSH decrease in extruded wheat grains. In contrast, the two high temperature profiles did not [source]


Moisture Migration in Solid Food Matrices

JOURNAL OF FOOD SCIENCE, Issue 8 2003
Y.-C. Fu
ABSTRACT: The goals of this study were to measure moisture migration in a porous solid matrix simulating a real food (flour dough) and to accomplish heating of the solid matrix. An off-line technique and a microwave temperature controller system were developed for measuring moisture concentration under isothermal heating condition. A temperature profile of a cylindrical dough sample was achieved by accurate control of microwave energy input and preheated carrier gas temperature. Results showed a simplified 1st order kinetic model adequately predicted moisture loss in dough samples. Effect of temperature on the rate constant was adequately modeled by the Arrhenius relationship. The rate constant was found to be affected by porosity of the dough sample. [source]


Temperature Profiles in a Cylindrical Model Food During Pulsed Microwave Heating

JOURNAL OF FOOD SCIENCE, Issue 7 2001
H.W. Yang
ABSTRACT: Cylindrical 2%-agar gel samples were heated by pulsed and continuous microwave applications. The total microwave application time of 3 min was maintained for all experiments. Sample temperature was measured at various depths along the radial dimension to experimentally determine the internal temperature profile as a function of heating time. A local hot spot was observed at the center portion of the sample during the continuous microwave application. This hot spot was less significant during pulsed microwave applications, especially when longer intermittent power-off times were employed. An implicit finite-difference model was used to estimate temperature profiles within the sample during microwave heating. The estimated temperature profiles matched the experimental values well. [source]


Overall efficiency evaluation of commercial distillation columns with valve and dualflow trays

AICHE JOURNAL, Issue 9 2010
T. L. Domingues
Abstract The main objective of this work is to establish appropriated ways for estimating the overall efficiencies of industrial distillation columns with valve trays with downcomer and dualflow trays. The knowledge of efficiencies has fundamental importance in the design and performance evaluation of distillation columns. Searching in the literature, a tree of alternatives was identified to compose the tray efficiency model, depending on the mass transfer models, the liquid distribution and vapor flow models on the tray, the liquid entrainment model, the multicomponent mixture equilibrium model, the physical properties models, the height of froth on the tray model and the efficiency definition. In this work, different methods to predict the overall efficiency of distillation columns with valve and dualflow trays were composed and compared with data from three commercial distillation columns under different operating conditions. The models were inserted in the Aspen Plus 12.1 simulator, in Fortran language, together with tray geometrical data, fluid properties and operating data of the distillation columns. For each column, the best thermodynamic package was chosen by checking the temperature profile and overhead and bottom compositions obtained via simulation against the corresponding actual data of industrial columns. A modification in the fraction of holes evaluation that is jetting parameter of the Garcia's hydraulic model of dispersion above the tray was proposed. This modification produced better results than the original model to predict the fraction of holes that are jetting and in the efficiency of dualflow trays and similar results to Garcia model in the efficiency evaluation of valve trays. © 2010 American Institute of Chemical Engineers AIChE J, 2010 [source]


Multi-scale study on the secondary reactions of fluid catalytic cracking gasoline

AICHE JOURNAL, Issue 8 2009
Bo-lun Yang
Abstract Multi-scale model considered the heat transfer, mass transfer, momentum transfer, fluid flow with reactions together at different spatiotemporal scales for the riser reactor of secondary reactions of fluid catalytic cracking gasoline (SRFCCG) process has been preformed in this work. Micro-scale of kinetics in catalyst particles, meso-scale of clusters, voids, dense phase, dilute phases, and heterogeneous structures in gas,solid flow, and the macro-scale of product distribution over riser reactor have been established using multi-scale modeling method and integrated by the multi-domain strategy. The proposed model was solved with the software of EQUATRAN-G. Good agreement between simulation results and the experimental data suggested that the proposed model was well constructed and simulation exercise was successful. The multi-scale model was capable of predicting heterogeneous structures of multi-phase flow, reactor temperature profile, and product distribution of SRFCCG process. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Microwave regeneration of zeolites in a 1 meter column

AICHE JOURNAL, Issue 7 2009
Matthias Meier
Abstract Although sorption is a common method of removing volatile organic compounds (VOC's) from processes, the adsorbent must be regenerated to repeat the process. The use of microwaves to regenerate the bed of adsorbent can be more efficient than conventional heating methods. Desorption of methanol from a silicalite zeolite was studied by the use of microwaves in cylindrical column. Temperature probes at five axial and three radial positions monitored the temperature profile in time. A significant amount of microwave energy passed through the dry zeolite bed, whereas a strong attenuation occurs if methanol is adsorbed. The radial temperature distribution conforms to theoretical predictions; however, microwave reflections cause a distortion of the predictions in the axial direction. Irregularities during the saturation of the bed indicated a chemical reaction during the irradiation with microwaves. A fraction of the methanol reacted under microwave irradiation to form dimethylether and water, and to methoxylate the zeolite surface. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Rapid lightoff of syngas production from methane: A transient product analysis

AICHE JOURNAL, Issue 1 2005
Kenneth A. Williams
Abstract Steady-state production of syngas (CO and H2) can be attained within 10 s from room-temperature mixtures of methane and air fed to a short-contact-time reactor by initially operating at combustion stoichiometry (CH4/O2 = 0.5) and then quickly switching to syngas stoichiometry (CH4/O2 = 2.0). The methane/air mixture is first ignited, forming a premixed flame upstream of the catalyst that heats the Rh-impregnated ,-alumina foam monolith to catalytic lightoff (T > 500°C) in a few seconds. The methane/oxygen ratio is then increased to partial oxidation stoichiometry, which extinguishes the flame and effects immediate autothermal syngas production. Transient species profiles are measured with a rapid-response mass spectrometer (response time constant , 0.5 s), and catalyst temperature is measured with a thermocouple at the catalyst back face. Because the monolith thermal response time (, 1 s) is several orders of magnitude larger than the reaction timescales (, 10,12 to 10,3 s), chemistry and flow should be mathematically decoupled from local transient variations in catalyst temperature. Using this assumption, a transient temperature profile is combined with detailed surface chemistry for methane on Rh in a numerical plug-flow model. This approach accurately reproduces the transient species profiles measured during experimental lightoff for short combustion time experiments and lends insight into how the monolith temperature develops with time. The combined experimental and numerical efforts supply useful information on the transient reactor behavior for various combustion times and identify a combustion time to avoid undershoot or overshoot in catalyst temperature and minimize start-up time. © 2004 American Institute of Chemical Engineers AIChE J, 51: 247,260, 2005 [source]


Dryout phenomena in a three-phase fixed-bed reactor

AICHE JOURNAL, Issue 1 2003
Zhen-Min Cheng
Understanding the mechanism of liquid-phase evaporation in a three-phase fixed-bed reactor is of practical importance, because the reaction heat is usually 7,10 times the vaporization heat of the liquid components. Evaporation, especially the liquid dryout, can largely influence the reactor performance and even safety. To predict the vanishing condition of the liquid phase, Raoult's law was applied as a preliminary approach, with the liquid vanishing temperature defined based on a liquid flow rate of zero. While providing correct trends, Raoult's law exhibits some limitation in explaining the temperature profile in the reactor. To comprehensively understand the whole process of liquid evaporation, a set of experiments on inlet temperature, catalyst activity, liquid flow rate, gas flow rate, and operation pressure were carried out. A liquid-region length-predicting equation is suggested based on these experiments and the principle of heat balance. [source]


Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP

JOURNAL OF QUATERNARY SCIENCE, Issue 4 2001
Sigfus J. Johnsen
Abstract Oxygen isotope variations spanning the last glacial cycle and the Holocene derived from ice-core records for six sites in Greenland (Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP) show strong similarities. This suggests that the dominant influence on oxygen isotope variations reflected in the ice-sheet records was regional climatic change. Differences in detail between the records probably reflect the effects of basal deformation in the ice as well as geographical gradients in atmospheric isotope ratios. Palaeotemperature estimates have been obtained from the records using three approaches: (i) inferences based on the measured relationship between mean annual ,18O of snow and of mean annual surface temperature over Greenland; (ii) modelled inversion of the borehole temperature profile constrained either by the dated isotopic profile, or (iii) by using Monte Carlo simulation techniques. The third of these approaches was adopted to reconstruct Holocene temperature variations for the Dye 3 and GRIP temperature profiles, which yields remarkably compatible results. A new record of Holocene isotope variations obtained from the NorthGRIP ice-core matches the GRIP short-term isotope record, and also shows similar long-term trends to the Dye-3 and GRIP inverted temperature data. The NorthGRIP isotope record reflects: (i) a generally stronger isotopic signal than is found in the GRIP record; (ii) several short-lived temperature fluctuations during the first 1500 yr of the Holocene; (iii) a marked cold event at ca. 8.2 ka (the ,8.2 ka event'); (iv) optimum temperatures for the Holocene between ca. 8.6 and 4.3 ka, a signal that is 0.6, stronger than for the GRIP profile; (v) a clear signal for the Little Ice Age; and (vi) a clear signal of climate warming during the last century. These data suggest that the NorthGRIP stable isotope record responded in a sensitive manner to temperature fluctuations during the Holocene. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Temperature-Gradient Effects in Thermal Barrier Coatings: An Investigation Through Modeling, High Heat Flux Test, and Embedded Sensor

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2010
Yang Tan
The harsh thermal environment in gas turbines, including elevated temperatures and high heat fluxes, induces significant thermal gradients in ceramic thermal barrier coatings (TBCs), which are used to protect metallic components. However, the thermal conductivity of plasma-sprayed TBC increases with exposure at high temperatures mainly due to sintering phenomena and possible phase transformation, resulting in coating performance degradation and potential thermal runaway issues. An analytical thermal model and experimentally obtained coating thermal conductivity data are used to determine the coating through-thickness temperature profile and effective thermal conductivity under gradient conditions at high temperatures. High heat flux tests are then performed on TBCs to evaluate coating thermal behavior under temperature gradients close to service conditions. Coating internal temperature during the tests was also measured by thermally sprayed embedded thermocouples within the top coat. This combined approach provides a sintering map with a new model and allows for the assessment of temperature-gradient effects on the thermal performance of plasma-sprayed TBCs. [source]


Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1,064 nm

LASERS IN SURGERY AND MEDICINE, Issue 2 2005
John F. Black PhD
Abstract Background and Objectives We seek to compare and contrast the mechanisms of blood photocoagulation under 532 and 1,064 nm laser irradiation in vitro in order to better understand the in vivo observations. We also seek to validate a finite element model (FEM) developed to study the thermodynamics of coagulation. Study Design/Materials and Methods We study the photocoagulation of whole blood in vitro at 532 and 1,064 nm using time-domain spectroscopic and optical coherence tomography (OCT)-based imaging techniques. We model the coagulation using an FEM program that includes the latent heat of vaporization (LHV) of water, consideration of the pulse shape of the laser, and the bathochromic shift in the hemoglobin absorption spectrum. Results We find significant similarities in the spectroscopic, chemical, and structural changes occurring in hemoglobin and in the blood matrix during photocoagulation despite the very large difference in the absorption coefficients. The more uniform temperature profile developed by the deeper-penetrating 1,064 nm laser allows us to resolve the structural phase transition in the red blood cells (going from biconcave disc to spherocyte) and the chemical transition creating met-hemoglobin. We find that the RBC morphology transition happens first, and that the met-Hb transition happens at a much higher temperature (,>,90°C) than is found in slow bath heating. The FEM analysis with the LHV constraint and bathochromic shift predicts accurately the imaging results in both cases, and can be used to show that at 1,064 nm there is the potential for a runaway increase in absorption during the laser pulse. Conclusions Photothermally mediated processes dominate the in vitro coagulation dynamics in both regimes despite the difference in absorption coefficients. There is a significant risk under 1,064 nm irradiation of vascular lesions in vivo that the dynamic optical properties of blood will cause runaway absorption and heating. This may in turn explain some recent results at this wavelength where full-thickness burns resulted from laser treatment. Lasers Surg. Med. 36:155,165, 2005. © 2005 Wiley-Liss, Inc. [source]