Home About us Contact | |||
Temperature Functions (temperature + function)
Selected AbstractsTemperature functions of the rate coefficients of net N mineralization in sandy arable soils.JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2004Part I. Derivation from laboratory incubations Abstract This study aimed to experimentally determine adequate temperature functions for the rate coefficients of net N mineralization in sandy arable soils from NW Germany. Long-term laboratory incubations were carried out in seven sandy arable soils at 3°C, 10°C, 19°C, 28°C, and 35°C in order to derive the rate coefficients of a simultaneous two-pool first-order kinetic equation. Thereby we differentiated between a small, fast mineralizable N pool, comprising mainly fresh residues, and a larger, slowly mineralizable N pool of old, humified organic matter. The rate coefficients were plotted against temperature, and fits of several different functions were tested: Arrhenius, Q10, and multiple non-mechanistic equations. The two derived rate coefficients showed very different temperature functions. Especially in critical temperature ranges (<5/10°C, >30/35°C) common Q10 functions failed to fit well, and, only below 10°C, the Arrhenius functions were in agreement with mean measured rate coefficients. Over the studied temperature range, only relatively complex, multiple equations could adequately account for the observed patterns. In addition, temperature functions that have been derived earlier from loess soils from NW Germany were found not to be transferable to the sandy arable soils studied. Thus, the results strongly question the use of the same Arrhenius or Q10 function or the same rate modifying factor for different N pools as well as for different soils as is generally done in models. Evaluations with field measurements of net N mineralization in part II of the paper (Heumann and Böttcher, 2004) will show which functions perform best in the field. Die Temperaturfunktionen der Reaktionskoeffizienten der N-Nettomineralisation in sandigen Ackerböde nI. Ableitung aus Laborinkubationen Untersuchungsziel war die experimentelle Bestimmung adäquater Temperaturfunktionen für die Reaktionskoeffizienten der N-Nettomineralisation in sandigen Ackerböden NW-Deutschlands. Anhand von Langzeit-Laborinkubationen bei 3, 10, 19, 28 und 35,°C wurden für sieben sandige Ackerböden die Reaktionskoeffizienten zweier N-Pools mit Reaktionskinetik erster Ordnung ermittelt. Dadurch konnte zwischen einem kleineren, schnell mineralisierbaren N-Pool, der hauptsächlich frische Residuen umfasst, und einem größeren, langsam mineralisierbaren N-Pool aus überwiegend alter humifizierter organischer Substanz unterschieden werden. Die ermittelten Reaktionskoeffizienten wurden gegen die Temperatur aufgetragen und verschiedene Funktionen angepasst: Arrhenius-, Q10 - und multiple nicht-mechanistische Gleichungen. Die Temperaturfunktionen der beiden Reaktionskoeffizienten unterschieden sich stark. Besonders innerhalb kritischer Temperaturbereiche (<5/10,°C, >30/35,°C) war die Übereinstimmung üblicher Q10 -Funktionen schlecht, und nur unterhalb von 10,°C stimmten die Arrhenius-Funktionen mit den mittleren gemessenen Reaktionskoeffizienten überein. Über den gesamten untersuchten Temperaturbereich konnten nur relativ komplexe, multiple Gleichungen die beobachteten Verläufe angemessen nachzeichnen. Weiterhin waren die Temperaturfunktionen, die ehemals an norddeutschen Lössböden ermittelt wurden, nicht auf die untersuchten sandigen Ackerböden übertragbar. Daher stellen die Ergebnisse den Gebrauch derselben Arrhenius- oder Q10 -Funktion sowie gleicher Ratenfaktoren für verschiedene N-Pools und auch für verschiedene Böden stark in Frage. In Teil II der Arbeit (Heumann and Böttcher, 2004) wird anhand einer Überprüfung mit Messungen der N-Nettomineralisation im Feld gezeigt, welche Funktionen die beste Übereinstimmung im Freiland erbringen. [source] Temperature functions of the rate coefficients of net N mineralization in sandy arable soils.JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2004Part II. Abstract The aim of this study was to evaluate experimentally derived temperature functions for the rate coefficients of net N mineralization in sandy arable soils from NW Germany via field measurements. In part I of this paper (Heumann and Böttcher, 2004), different temperature functions for the rate coefficients of a two-pool first-order kinetic equation were derived by long-term laboratory incubations at 3°C to 35°C. In this paper, field net N mineralization during winter of 25 plots was measured in undisturbed soil columns with a diameter of 20,cm to the depth of the Ap horizon. Mean simulated net N mineralization with the most adequate multiple functions corresponded also best with the mean of the measured values despite of an overestimation of about 10%. Distinctly larger deviations under use of other temperature functions (Arrhenius, Q10) were directly related to their deviations from mean, experimentally derived rate coefficients. Simulated net N mineralization in the soil columns was significantly correlated with measured values, regardless of the temperature functions. Yet the goodness of fit was generally relatively low due to the spatial variability of measured net N mineralization within replicate soil columns, although the mean CV (38%) was by far not extraordinary. The pool of slowly mineralizable N contributed considerably to net N mineralization during four to five winter months, on an average 10.0 kg N ha,1, about one third of total simulated N mineralization. Sometimes, it contributed even 21.3 kg N ha,1, which is almost sufficient to reach the EU drinking-water limit for nitrate in these soils. Simulations with widely used functions that were once derived from loess soils overestimated mineralization from pool Nslow in the studied sandy arable soils by a factor of two. Die Temperaturfunktionen der Reaktionskoeffizienten der N-Nettomineralisation in sandigen Ackerböde nII. Überprüfung anhand von Mineralisationsmessungen im Freiland Ziel dieser Untersuchung war die Überprüfung experimentell ermittelter Temperaturfunktionen für die Reaktionskoeffizienten der N-Nettomineralisation in sandigen Ackerböden NW-Deutschlands anhand von Freilandmessungen. In Teil I der Arbeit (Heumann and Böttcher, 2004) wurden verschiedene Temperaturfunktionen für die Reaktionskoeffizienten zweier N-Pools mit Reaktionskinetik erster Ordnung mittels Langzeit-Laborinkubationen bei 3 bis 35°C bestimmt. In diesem Artikel wurde von 25 Plots die winterliche N-Nettomineralisation im Freiland in ungestörten Bodensäulen mit einem Durchmesser von 20,cm bis zur Tiefe des Ap-Horizontes gemessen. Im Mittel gaben die Simulationen mit den am besten passenden, multiplen Funktionen die Messergebnisse auch am besten wieder, trotz einer Überschätzung um etwa 10%. Deutlich größere Abweichungen bei Benutzung anderer Temperaturfunktionen (Arrhenius, Q10) standen in direkter Beziehung zu deren Abweichungen von den mittleren, experimentell ermittelten Reaktionskoeffizienten. Die simulierte N-Nettomineralisation war unabhängig von den Temperaturfunktionen signifikant mit den Messergebnissen korreliert. Jedoch war die Güte der Anpassung im Allgemeinen relativ niedrig aufgrund der räumlichen Variabilität der gemessenen N-Nettomineralisation innerhalb der einzelnen Säulen eines Plots, obwohl der mittlere CV (38%) bei weitem nicht außergewöhnlich war. Der langsam mineralisierbare N-Pool trug beträchtlich zur N-Nettomineralisation innerhalb von vier bis fünf Wintermonaten bei, durchschnittlich 10,0 kg N ha,1, etwa ein Drittel der gesamten simulierten N-Mineralisation. In manchen Böden waren es sogar 21,3 kg N ha,1, was fast ausreicht, um den EU-Trinkwassergrenzwert für Nitrat in diesen Böden zu erreichen. Simulationen mit häufig benutzten Funktionen, die ursprünglich an Lössböden ermittelt wurden, überschätzten die Mineralisation aus dem Pool Nslow in den untersuchten Sandböden um den Faktor zwei. [source] Vertical partitioning of CO2 production within a temperate forest soilGLOBAL CHANGE BIOLOGY, Issue 6 2006ERIC A. DAVIDSON Abstract The major driving factors of soil CO2 production , substrate supply, temperature, and water content , vary vertically within the soil profile, with the greatest temporal variations of these factors usually near the soil surface. Several studies have demonstrated that wetting and drying of the organic horizon contributes to temporal variation in summertime soil CO2 efflux in forests, but this contribution is difficult to quantify. The objectives of this study were to partition CO2 production vertically in a mixed hardwood stand of the Harvard Forest, Massachusetts, USA, and then to use that partitioning to evaluate how the relative contributions of CO2 production by genetic soil horizon vary seasonally and interannually. We measured surface CO2 efflux and vertical soil profiles of CO2 concentration, temperature, water content, and soil physical characteristics. These data were applied to a model of effective diffusivity to estimate CO2 flux at the top of each genetic soil horizon and the production within each horizon. A sensitivity analysis revealed sources of uncertainty when applying a diffusivity model to a rocky soil with large spatial heterogeneity, especially estimates of bulk density and volumetric water content and matching measurements of profiles and surface fluxes. We conservatively estimate that the O horizon contributed 40,48% of the total annual soil CO2 efflux. Although the temperature sensitivity of CO2 production varied across soil horizons, the partitioning of CO2 production by horizon did not improve the overall prediction of surface CO2 effluxes based on temperature functions. However, vertical partitioning revealed that water content covaried with CO2 production only in the O horizon. Large interannual variations in estimates of O horizon CO2 production indicate that this layer could be an important transient interannual source or sink of ecosystem C. [source] Temperature functions of the rate coefficients of net N mineralization in sandy arable soils.JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2004Part I. Derivation from laboratory incubations Abstract This study aimed to experimentally determine adequate temperature functions for the rate coefficients of net N mineralization in sandy arable soils from NW Germany. Long-term laboratory incubations were carried out in seven sandy arable soils at 3°C, 10°C, 19°C, 28°C, and 35°C in order to derive the rate coefficients of a simultaneous two-pool first-order kinetic equation. Thereby we differentiated between a small, fast mineralizable N pool, comprising mainly fresh residues, and a larger, slowly mineralizable N pool of old, humified organic matter. The rate coefficients were plotted against temperature, and fits of several different functions were tested: Arrhenius, Q10, and multiple non-mechanistic equations. The two derived rate coefficients showed very different temperature functions. Especially in critical temperature ranges (<5/10°C, >30/35°C) common Q10 functions failed to fit well, and, only below 10°C, the Arrhenius functions were in agreement with mean measured rate coefficients. Over the studied temperature range, only relatively complex, multiple equations could adequately account for the observed patterns. In addition, temperature functions that have been derived earlier from loess soils from NW Germany were found not to be transferable to the sandy arable soils studied. Thus, the results strongly question the use of the same Arrhenius or Q10 function or the same rate modifying factor for different N pools as well as for different soils as is generally done in models. Evaluations with field measurements of net N mineralization in part II of the paper (Heumann and Böttcher, 2004) will show which functions perform best in the field. Die Temperaturfunktionen der Reaktionskoeffizienten der N-Nettomineralisation in sandigen Ackerböde nI. Ableitung aus Laborinkubationen Untersuchungsziel war die experimentelle Bestimmung adäquater Temperaturfunktionen für die Reaktionskoeffizienten der N-Nettomineralisation in sandigen Ackerböden NW-Deutschlands. Anhand von Langzeit-Laborinkubationen bei 3, 10, 19, 28 und 35,°C wurden für sieben sandige Ackerböden die Reaktionskoeffizienten zweier N-Pools mit Reaktionskinetik erster Ordnung ermittelt. Dadurch konnte zwischen einem kleineren, schnell mineralisierbaren N-Pool, der hauptsächlich frische Residuen umfasst, und einem größeren, langsam mineralisierbaren N-Pool aus überwiegend alter humifizierter organischer Substanz unterschieden werden. Die ermittelten Reaktionskoeffizienten wurden gegen die Temperatur aufgetragen und verschiedene Funktionen angepasst: Arrhenius-, Q10 - und multiple nicht-mechanistische Gleichungen. Die Temperaturfunktionen der beiden Reaktionskoeffizienten unterschieden sich stark. Besonders innerhalb kritischer Temperaturbereiche (<5/10,°C, >30/35,°C) war die Übereinstimmung üblicher Q10 -Funktionen schlecht, und nur unterhalb von 10,°C stimmten die Arrhenius-Funktionen mit den mittleren gemessenen Reaktionskoeffizienten überein. Über den gesamten untersuchten Temperaturbereich konnten nur relativ komplexe, multiple Gleichungen die beobachteten Verläufe angemessen nachzeichnen. Weiterhin waren die Temperaturfunktionen, die ehemals an norddeutschen Lössböden ermittelt wurden, nicht auf die untersuchten sandigen Ackerböden übertragbar. Daher stellen die Ergebnisse den Gebrauch derselben Arrhenius- oder Q10 -Funktion sowie gleicher Ratenfaktoren für verschiedene N-Pools und auch für verschiedene Böden stark in Frage. In Teil II der Arbeit (Heumann and Böttcher, 2004) wird anhand einer Überprüfung mit Messungen der N-Nettomineralisation im Feld gezeigt, welche Funktionen die beste Übereinstimmung im Freiland erbringen. [source] Temperature functions of the rate coefficients of net N mineralization in sandy arable soils.JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2004Part II. Abstract The aim of this study was to evaluate experimentally derived temperature functions for the rate coefficients of net N mineralization in sandy arable soils from NW Germany via field measurements. In part I of this paper (Heumann and Böttcher, 2004), different temperature functions for the rate coefficients of a two-pool first-order kinetic equation were derived by long-term laboratory incubations at 3°C to 35°C. In this paper, field net N mineralization during winter of 25 plots was measured in undisturbed soil columns with a diameter of 20,cm to the depth of the Ap horizon. Mean simulated net N mineralization with the most adequate multiple functions corresponded also best with the mean of the measured values despite of an overestimation of about 10%. Distinctly larger deviations under use of other temperature functions (Arrhenius, Q10) were directly related to their deviations from mean, experimentally derived rate coefficients. Simulated net N mineralization in the soil columns was significantly correlated with measured values, regardless of the temperature functions. Yet the goodness of fit was generally relatively low due to the spatial variability of measured net N mineralization within replicate soil columns, although the mean CV (38%) was by far not extraordinary. The pool of slowly mineralizable N contributed considerably to net N mineralization during four to five winter months, on an average 10.0 kg N ha,1, about one third of total simulated N mineralization. Sometimes, it contributed even 21.3 kg N ha,1, which is almost sufficient to reach the EU drinking-water limit for nitrate in these soils. Simulations with widely used functions that were once derived from loess soils overestimated mineralization from pool Nslow in the studied sandy arable soils by a factor of two. Die Temperaturfunktionen der Reaktionskoeffizienten der N-Nettomineralisation in sandigen Ackerböde nII. Überprüfung anhand von Mineralisationsmessungen im Freiland Ziel dieser Untersuchung war die Überprüfung experimentell ermittelter Temperaturfunktionen für die Reaktionskoeffizienten der N-Nettomineralisation in sandigen Ackerböden NW-Deutschlands anhand von Freilandmessungen. In Teil I der Arbeit (Heumann and Böttcher, 2004) wurden verschiedene Temperaturfunktionen für die Reaktionskoeffizienten zweier N-Pools mit Reaktionskinetik erster Ordnung mittels Langzeit-Laborinkubationen bei 3 bis 35°C bestimmt. In diesem Artikel wurde von 25 Plots die winterliche N-Nettomineralisation im Freiland in ungestörten Bodensäulen mit einem Durchmesser von 20,cm bis zur Tiefe des Ap-Horizontes gemessen. Im Mittel gaben die Simulationen mit den am besten passenden, multiplen Funktionen die Messergebnisse auch am besten wieder, trotz einer Überschätzung um etwa 10%. Deutlich größere Abweichungen bei Benutzung anderer Temperaturfunktionen (Arrhenius, Q10) standen in direkter Beziehung zu deren Abweichungen von den mittleren, experimentell ermittelten Reaktionskoeffizienten. Die simulierte N-Nettomineralisation war unabhängig von den Temperaturfunktionen signifikant mit den Messergebnissen korreliert. Jedoch war die Güte der Anpassung im Allgemeinen relativ niedrig aufgrund der räumlichen Variabilität der gemessenen N-Nettomineralisation innerhalb der einzelnen Säulen eines Plots, obwohl der mittlere CV (38%) bei weitem nicht außergewöhnlich war. Der langsam mineralisierbare N-Pool trug beträchtlich zur N-Nettomineralisation innerhalb von vier bis fünf Wintermonaten bei, durchschnittlich 10,0 kg N ha,1, etwa ein Drittel der gesamten simulierten N-Mineralisation. In manchen Böden waren es sogar 21,3 kg N ha,1, was fast ausreicht, um den EU-Trinkwassergrenzwert für Nitrat in diesen Böden zu erreichen. Simulationen mit häufig benutzten Funktionen, die ursprünglich an Lössböden ermittelt wurden, überschätzten die Mineralisation aus dem Pool Nslow in den untersuchten Sandböden um den Faktor zwei. [source] Improved temperature response functions for models of Rubisco-limited photosynthesisPLANT CELL & ENVIRONMENT, Issue 2 2001C. J. Bernacchi ABSTRACT Predicting the environmental responses of leaf photosynthesis is central to many models of changes in the future global carbon cycle and terrestrial biosphere. The steady-state biochemical model of C3 photosynthesis of Farquhar et al. (Planta 149, 78,90, 1980) provides a basis for these larger scale predictions; but a weakness in the application of the model as currently parameterized is the inability to accurately predict carbon assimilation at the range of temperatures over which significant photosynthesis occurs in the natural environment. The temperature functions used in this model have been based on in vitro measurements made over a limited temperature range and require several assumptions of in vivo conditions. Since photosynthetic rates are often Rubisco-limited (ribulose, 1-5 bisphosphate carboxylase/oxygenase) under natural steady-state conditions, inaccuracies in the functions predicting Rubisco kinetic properties at different temperatures may cause significant error. In this study, transgenic tobacco containing only 10% normal levels of Rubisco were used to measure Rubisco-limited photosynthesis over a large range of CO2 concentrations. From the responses of the rate of CO2 assimilation at a wide range of temperatures, and CO2 and O2 concentrations, the temperature functions of Rubisco kinetic properties were estimated in vivo. These differed substantially from previously published functions. These new functions were then used to predict photosynthesis in lemon and found to faithfully mimic the observed pattern of temperature response. There was also a close correspondence with published C3 photosynthesis temperature responses. The results represent an improved ability to model leaf photosynthesis over a wide range of temperatures (10,40 °C) necessary for predicting carbon uptake by terrestrial C3 systems. [source] On the Analyses of Mixture Vapor Pressure Data: The Hydrogen Peroxide/Water System and Its Excess Thermodynamic FunctionsCHEMISTRY - A EUROPEAN JOURNAL, Issue 24 2004Stanley L. Manatt Dr. Abstract Reported here are some aspects of the analysis of mixture vapor pressure data using the model-free Redlich,Kister approach that have heretofore not been recognized. These are that the pure vapor pressure of one or more components and the average temperature of the complex apparatuses used in such studies can be obtained from the mixture vapor pressures. The findings reported here raise questions regarding current and past approaches for analyses of mixture vapor pressure data. As a test case for this analysis approach the H2O2,H2O mixture vapor pressure measurements reported by Scatchard, Kavanagh, and Tickner (G. Scatchard, G. M. Kavanagh, L. B. Ticknor, J. Am. Chem. Soc.1952, 74, 3715,3720; G. M. Kavanagh, PhD. Thesis, Massachusetts Institute of Technology (USA), 1949) have been used; there is significant recent interest in this system. It was found that the original data is fit far better with a four-parameter Redlich,Kister excess energy expansion with inclusion of the pure hydrogen peroxide vapor pressure and the temperature as parameters. Comparisons of the present results with the previous analyses of this suite of data exhibit significant deviations. A precedent for consideration of iteration of temperature exists from the little-known work of Uchida, Ogawa, and Yamaguchi (S. Uchida, S. Ogawa, M. Yamaguchi, Japan Sci. Eng. Sci.1950, 1, 41,49) who observed significant variations of temperature from place to place within a carefully insulated apparatus of the type traditionally used in mixture vapor pressure measurements. For hydrogen peroxide, new critical constants and vapor pressure,temperature equations needed in the analysis approach described above have been derived. Also temperature functions for the four Redlich,Kister parameters were derived, that allowed calculations of the excess Gibbs energy, excess entropy, and excess enthalpy whose values at various temperatures indicate the complexity of H2O2,H2O mixtures not evident in the original analyses of this suite of experimental results. [source] |