Distribution by Scientific Domains

Kinds of Telescope

  • cm telescope
  • herschel telescope
  • hubble space telescope
  • infrared telescope
  • large telescope
  • m telescope
  • optical telescope
  • radio telescope
  • schmidt telescope
  • space telescope
  • spitzer space telescope
  • subaru telescope
  • very large telescope
  • william herschel telescope
  • x-ray telescope

  • Terms modified by Telescope

  • telescope observation

  • Selected Abstracts

    Dynamic emission properties of pulsars B0943+10 and B1822,09 , I. Comparison, and the discovery of a ,Q'-mode precursor

    Isaac Backus
    ABSTRACT This paper reports new observations of pulsars B0943+10 and B1822,09 carried out with the Arecibo Observatory and the Giant Metrewave Radio Telescope, respectively. Both stars exhibit two stable emission modes. We report the discovery in B0943+10 of a highly linearly polarized ,precursor' (PC) component that occurs primarily in only one mode. This emission feature closely resembles B1822,09's PC which also occurs brightly in only one mode. B0943+10's other mode is well known for its highly regular drifting subpulses that are apparently produced by a rotating ,carousel' system of 20 ,beamlets.' Similarly, B1822,09 exhibits subpulse-modulation behaviour only in the mode where its PC is absent. We survey our 18 h of B0943+10 observations and find that the ,sideband'-modulation features, from which the carousel-rotation time can be directly determined, occur rarely , less than 5 per cent of the time , but always indicating 20 ,beamlets'. We present an analysis of B1822,09's modal modulation characteristics at 325 MHz and compare them in detail with B0943+10. The pulsar never seems to null, and we find a 43-rotation-period P3 feature in the star's ,Q' mode that modulates the interpulse (IP) as well as the conal features in the main pulse (MP). We conclude that B1822,09 must have a nearly orthogonal geometry and that its carousel circulation time is long compared to the modal subsequences available in our observations, and the MP/IP separation is almost exactly 180°. We conclude the PCs for both stars are incompatible with core,cone emission. We assess the interesting suggestion by Dyks et al. that downward-going radiation produces B1822,09's PC emission. [source]

    Optical turbulence vertical distribution with standard and high resolution at Mt Graham

    E. Masciadri
    ABSTRACT A characterization of the optical turbulence vertical distribution (C2N profiles) and all the main integrated astroclimatic parameters derived from the C2N and the wind speed profiles above the site of the Large Binocular Telescope (LBT) (Mt Graham, Arizona, USA) is presented. The statistics include measurements related to 43 nights done with a Generalized SCIDAR (GS) used in standard configuration with a vertical resolution ,H, 1 km on the whole 20 km and with the new technique (High Vertical Resolution GS) in the first kilometre. The latter achieves a resolution ,H, 20,30 m in this region of the atmosphere. Measurements done in different periods of the year permit us to provide a seasonal variation analysis of the C2N. A discretized distribution of C2N, useful for the Ground Layer Adaptive Optics (GLAO) simulations, is provided and a specific analysis for the LBT Laser Guide Star system ARGOS (running in GLAO configuration) case is done including the calculation of the ,grey zones' for J, H and K bands. Mt Graham is confirmed to be an excellent site with median values of the seeing without dome contribution ,= 0.72 arcsec, the isoplanatic angle ,0= 2.5 arcsec and the wavefront coherence time ,0= 4.8 ms. We find that the OT vertical distribution decreases in a much sharper way than what has been believed so far in the proximity of the ground above astronomical sites. We find that 50 per cent of the whole turbulence develops in the first 80 ± 15 m from the ground. We finally prove that the error in the normalization of the scintillation that has been recently demonstrated in the principle of the GS technique affects these measurements by an absolutely negligible quantity (0.04 arcsec). [source]

    Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star cluster

    M. Schartmann
    ABSTRACT Recently, high-resolution observations with the help of the near-infrared adaptive optics integral field spectrograph Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) at the Very Large Telescope proved the existence of massive and young nuclear star clusters in the centres of a sample of Seyfert galaxies. With the help of three-dimensional high-resolution hydrodynamical simulations with the Pluto code, we follow the evolution of such clusters, especially focusing on stellar mass loss feeding gas into the ambient interstellar medium and driving turbulence. This leads to a vertically wide distributed clumpy or filamentary inflow of gas on large scales (tens of parsec), whereas a turbulent and very dense disc builds up on the parsec scale. In order to capture the relevant physics in the inner region, we treat this disc separately by viscously evolving the radial surface density distribution. This enables us to link the tens of parsec-scale region (accessible via SINFONI observations) to the (sub-)parsec-scale region (observable with the mid-infrared interferometer instrument and via water maser emission). Thereby, this procedure provides us with an ideal testbed for data comparison. In this work, we concentrate on the effects of a parametrized turbulent viscosity to generate angular momentum and mass transfer in the disc and additionally take star formation into account. Most of the input parameters are constrained by available observations of the nearby Seyfert 2 galaxy NGC 1068, and we discuss parameter studies for the free parameters. At the current age of its nuclear starburst of 250 Myr, our simulations yield disc sizes of the order of 0.8,0.9 pc, gas masses of 106 M, and mass transfer rates of 0.025 M, yr,1 through the inner rim of the disc. This shows that our large-scale torus model is able to approximately account for the disc size as inferred from interferometric observations in the mid-infrared and compares well to the extent and mass of a rotating disc structure as inferred from water maser observations. Several other observational constraints are discussed as well. [source]

    The properties of the stellar populations in ULIRGs , I. Sample, data and spectral synthesis modelling

    J. Rodríguez Zaurín
    ABSTRACT We present deep long-slit optical spectra for a sample of 36 ultraluminous infrared galaxies (ULIRGs), taken with the William Herschel Telescope on La Palma with the aim of investigating the star formation histories and testing evolutionary scenarios for such objects. Here we present the sample, the analysis techniques and a general overview of the properties of the stellar populations; a more detailed discussion will be presented in a forthcoming paper. Spectral synthesis modelling has been used in order to estimate the ages of the stellar populations found in the diffuse light sampled by the spectra in both the nuclear and extended regions of the target galaxies. We find that adequate fits can be obtained using combinations of young stellar populations (YSPs; tYSP, 2 Gyr), with ages divided into two groups: very young stellar populations (VYSPs; tVYSP, 100 Myr) and intermediate-young stellar populations (IYSPs; 0.1 < tIYSP, 2 Gyr). Our results show that YSPs are present at all locations of the galaxies covered by our slit positions, with the exception of the northern nuclear region of the ULIRG IRAS 23327+2913. Furthermore, VYSPs are present in at least 85 per cent of the 133 extraction apertures used for this study, being more significant in the nuclear regions of the galaxies. Old stellar populations (OSPs; tOSP > 2 Gyr) do not make a major contribution to the optical light in the majority of the apertures extracted. In fact they are essential for fitting the spectra in only 5 per cent (seven) of the extracted apertures. The estimated total masses for the YSPs (VYSPs + IYSPs) are in the range 0.18 × 1010,MYSP, 50 × 1010 M,. We have also estimated the bolometric luminosities associated with the stellar populations detected at optical wavelengths, finding that they fall in the range 0.07 × 1012 < Lbol < 2.2 × 1012 L,. In addition, we find that reddening is significant at all locations in the galaxies. This result emphasizes the importance of accounting for reddening effects when modelling the stellar populations of star-forming galaxies. [source]

    The haloes of planetary nebulae in the mid-infrared: evidence for interaction with the interstellar medium

    G. Ramos-Larios
    ABSTRACT The motion of planetary nebulae through the interstellar medium (ISM) is thought to lead to a variety of observational consequences, including the formation of bright rims, deformation and fragmentation of the shells, and a shift of the central stars away from the geometric centres of the envelopes. These and other characteristics have been noted through imaging in the visual wavelength regime. We report further observations of such shells taken in the mid-infrared (MIR), acquired through programmes of Infrared Array Camera imaging undertaken using the SpitzerSpace Telescope. NGC 2440 and NGC 6629 are shown to possess likely interacting haloes, together with ram-pressure-stripped material to one side of their shells. Similarly, the outer haloes of NGC 3242 and NGC 6772 appear to have been fragmented through Rayleigh,Taylor (RT) instabilities, leading to a possible flow of ISM material towards the inner portions of their envelopes. If this interpretation is correct, then it would suggest that NGC 3242 is moving towards the NE, a suggestion which is also supported through the presence of a 60 ,m tail extending in the opposite direction, and curved bands of H, emission in the direction of motion , components which may arise through RT instabilities in the magnetized ISM. NGC 2438 possesses strong scalloping at the outer limits of its asymptotic giant branch (AGB) halo, probably reflecting RT instabilities at the nebular/ISM interface We also note that the interior structure of the source has been interpreted in terms of a recombining shell, a hypothesis which may not be consistent with the central star luminosities. Finally, we point out that two of the rims (and likely shock interfaces) appear to have a distinct signature in the MIR, whereby relative levels of 8.0 ,m emission are reduced. This may imply that the grain emission agents are depleted in the post-shock AGB regimes. [source]

    Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue , I. A sample of systems with components' masses between 1 and 2 M,

    K. G. He, miniak
    ABSTRACT We derive the absolute physical and orbital parameters for a sample of 18 detached eclipsing binaries from the All-Sky Automated Survey (ASAS) data base based on the available photometry and our own radial velocity (RV) measurements. The RVs are computed using spectra we collected with the 3.9-m Anglo-Australian Telescope (AAT) and its University College London Echelle Spectrograph (UCLES), and the 1.9-m Radcliffe telescope and its Grating Instrument for Radiation Analysis with a Fibre-Fed Echelle (GIRAFFE) at the South African Astronomical Observatory (SAAO). In order to obtain as precise RVs as possible, most of the systems were observed with an iodine cell available at the AAT/UCLES and/or analysed using the two-dimensional cross-correlation technique (TODCOR). The RVs were measured with TODCOR using synthetic template spectra as references. However, for two objects we used our own approach to the tomographic disentangling of the binary spectra to provide observed template spectra for the RV measurements and to improve the RV precision even more. For one of these binaries, AI Phe, we were able to the obtain an orbital solution with an RV rms of 62 and 24 m s,1 for the primary and secondary, respectively. For this system, the precision in M sin3i is 0.08 per cent. For the analysis, we used the photometry available in the ASAS data base. We combined the RV and light curves using phoebe and jktebop codes to obtain the absolute physical parameters of the systems. Having precise RVs, we were able to reach ,0.2 per cent precision (or better) in masses in several cases but in radii, due to the limited precision of the ASAS photometry, we were able to reach a precision of only 1 per cent in one case and 3,5 per cent in a few more cases. For the majority of our objects, the orbital and physical analysis is presented for the first time. [source]

    New multiply-lensed galaxies identified in ACS/NIC3 observations of Cl0024+1654 using an improved mass model

    Adi Zitrin
    ABSTRACT We present an improved strong-lensing analysis of Cl0024+1654 (z= 0.39) using deep Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS)/NIC3 images, based on 33 multiply-lensed images of 11 background galaxies. These are found with a model that assumes mass approximately traces light, with a low-order expansion to allow for flexibility on large scales. The model is constrained initially by the well-known five-image system (z= 1.675) and refined as new multiply-lensed systems are identified using the model. Photometric redshifts of these new systems are then used to constrain better the mass profile by adopting the standard cosmological relation between redshift and lensing distance. Our model requires only six free parameters to describe well all positional and redshift data. The resulting inner mass profile has a slope of d log M/d log r,,0.55, consistent with new weak-lensing measurements where the data overlap, at r, 200 kpc/h70. The combined profile is well fitted by a high-concentration Navarro, Frenk & White (NFW) mass profile, Cvir, 8.6 ± 1.6, similar to other well-studied clusters, but larger than predicted with standard , cold dark matter (,CDM). A well-defined radial critical curve is generated by the model and is clearly observed at r, 12 arcsec, outlined by elongated images pointing towards the centre of mass. The relative fluxes of the multiply-lensed images are found to agree well with the modelled magnifications, providing an independent consistency check. [source]

    The stellar population content of the thick disc and halo of the Milky Way analogue NGC 891

    M. Rejkuba
    ABSTRACT We present deep VI images obtained with the Advanced Camera for Surveys on board the Hubble Space Telescope, covering three fields in the north-east side of the edge-on disc galaxy NGC 891. The observed fields span a wide range of galactocentric distances along the eastern minor axis, extending from the plane of the disc to 12 kpc, and out to ,25 kpc along the major axis. The photometry of individual stars reaches ,2.5 mag below the tip of the red giant branch. We use the astrophotometric catalogue to probe the stellar content and metallicity distribution across the thick disc and spheroid of NGC 891. The colour,magnitude diagrams of thick disc and spheroid population are dominated by old red giant branch stars with a wide range of metallicities, from the sparsely populated metal-poor tail at [Fe/H],,2.4 dex, up to about half-solar metallicity. The peak of the metallicity distribution function of the thick disc is at ,0.9 dex. The inner parts of the thick disc, within ,14 kpc along the major axis show no vertical colour/metallicity gradient. In the outer parts, a mild vertical gradient of ,(V,I)0/,|Z| = 0.1 ± 0.05 kpc,1 or less than 0.1 dex kpc,1 is detected, with bluer colours or more metal-poor stars at larger distances from the plane. This gradient is, however, accounted for by the mixing with the metal-poor halo stars. No metallicity gradient along the major axis is present for thick-disc stars, but strong variations of about 0.35 dex around the mean of [Fe/H]=,1.13 dex are found. The properties of the asymmetric metallicity distribution functions of the thick-disc stars show no significant changes in both the radial and the vertical directions. The stellar populations situated within the solar-cylinder-like distances show strikingly different properties from those of the Galaxy populating similar distances. This suggests that the accretion histories of both galaxies have been different. The spheroid population, composed of the inner spheroid and the halo, shows remarkably uniform stellar population properties. The median metallicity of the halo stellar population shows a shallow gradient from about ,1.15 dex in the inner parts to ,1.27 dex at 24 kpc distance from the centre, corresponding to ,13reff. Similar to the thick-disc stars, large variations around the mean relation are present. [source]

    The determination of the rotation period and magnetic field geometry of the strongly magnetic roAp star HD 154708,

    S. Hubrig
    ABSTRACT We obtained 13 spectropolarimetric observations of the strongly magnetic rapidly oscillating Ap star HD 154708 over 3 months with the multimode instrument FORS 1, installed at the 8-m Kueyen telescope of the Very Large Telescope. These observations have been used for the determination of the rotation period of P= 5.3666 ± 0.0007 d. Using stellar fundamental parameters and the longitudinal magnetic field phase curve, we briefly discuss the magnetic field geometry. The star is observed nearly pole-on and the magnetic field geometry can be described by a centred dipole with a surface polar magnetic field strength Bd between 26.1 and 28.8 kG and an inclination of the magnetic axis to the rotation axis in the range to . [source]

    A survey for redshifted molecular and atomic absorption lines , II.

    3 Parkes quarter-Jansky flat-spectrum sample, Associated H i, millimetre lines in the z
    ABSTRACT We present the results of a z, 2.9 survey for H i 21-cm and molecular absorption in the hosts of radio quasars using the Giant Metrewave Radio Telescope and the Tidbinbilla 70-m telescope. Although the atomic gas has been searched to limits capable of detecting most known absorption systems, no H i was detected in any of the 10 sources. Previously published searches, which are overwhelmingly at redshifts of z, 1, exhibit a 42 per cent detection rate (31 out of 73 sources), whereas the inclusion of our survey yields a 17 per cent detection rate (two out of 12 sources) at z > 2.5. We therefore believe that our high-redshift selection is responsible for our exclusive non-detections, and find that at ultraviolet (UV) luminosities of LUV, 1023 W Hz,1, 21-cm absorption has never been detected. We also find this to not only apply to our targets, but also those at low redshift exhibiting similar luminosities, giving zero detections out of a total of 16 sources over z= 0.24 to 3.8. This is in contrast to the LUV, 1023 W Hz,1 sources where there is a near 50 per cent detection rate of 21-cm absorption. The mix of 21-cm detections and non-detections is currently attributed to orientation effects, where according to unified schemes of active galactic nuclei, 21-cm absorption is more likely to occur in sources designated as radio galaxies (type 2 objects, where the nucleus is viewed through dense obscuring circumnuclear gas) than in quasars (type 1 objects, where we have a direct view to the nucleus). However, due to the exclusively high UV luminosities of our targets it is not clear whether orientation effects alone can wholly account for the distribution, although there exists the possibility that the large luminosities are indicative of a changing demographic of galaxy types. We also find that below luminosities of LUV, 1023 W Hz,1, both type 1 and type 2 objects have a 50 per cent likelihood of exhibiting 21-cm absorption. Finally, we do not detect molecular gas in any of the sources. The lack of H i absorption, combined with the results from Paper I, suggests these sources are not conducive to high molecular abundances. [source]

    Magnetic fields and chemical peculiarities of the very young intermediate-mass binary system HD 72106

    C. P. Folsom
    ABSTRACT The recently discovered magnetic Herbig Ae and Be stars may provide qualitatively new information about the formation and evolution of magnetic Ap and Bp stars. We have performed a detailed investigation of one particularly interesting binary system with a Herbig Ae secondary and a late B-type primary possessing a strong, globally ordered magnetic field. 20 high-resolution Stokes V spectra of the system were obtained with the ESPaDOnS instrument mounted on the Canada,France,Hawaii Telescope. In these observations we see clear evidence for a magnetic field in the primary, but no evidence for a magnetic field in the secondary. A detailed abundance analysis was performed for both stars, revealing strong chemical peculiarities in the primary and normal chemical abundances in the secondary. The primary is strongly overabundant in Si, Cr and other iron-peak elements, as well as Nd, and underabundant in He. The primary therefore appears to be a very young Bp star. In this context, line profile variations of the primary suggest non-uniform lateral distributions of surface abundances. Interpreting the 0.639 95 ± 0.000 09 d variation period of the Stokes I and V profiles as the rotational period of the star, we have modelled the magnetic field geometry and the surface abundance distributions of Si, Ti, Cr and Fe using magnetic Doppler imaging. We derive a dipolar geometry of the surface magnetic field, with a polar strength Bd= 1230 G and an obliquity ,= 57°. The distributions Ti, Cr and Fe are all qualitatively similar, with an elongated patch of enhanced abundance situated near the positive magnetic pole. The Si distribution is somewhat different, and its relationship to the magnetic field geometry less clear. [source]

    Multifrequency integrated profiles of pulsars

    Simon Johnston
    ABSTRACT We have observed a total of 67 pulsars at five frequencies ranging from 243 to 3100 MHz. Observations at the lower frequencies were made at the Giant Metre-Wave Telescope in India and those at higher frequencies at the Parkes Telescope in Australia. We present profiles from 34 of the sample with the best signal-to-noise ratio and the least scattering. The general ,rules' of pulsar profiles are seen in the data; profiles get narrower, the polarization fraction declines and outer components become more prominent as the frequency increases. Many counterexamples to these rules are also observed, and pulsars with complex profiles are especially prone to rule breaking. We hypothesize that the location of pulsar emission within the magnetosphere evolves with time as the pulsar spins down. In highly energetic pulsars, the emission comes from a confined range of high altitudes, in the middle range of spin down energies the emission occurs over a wide range of altitudes whereas in pulsars with low spin-down energies it is confined to low down in the magnetosphere. [source]

    Evolution in the discs and bulges of group galaxies since z= 0.4

    Sean L. McGee
    ABSTRACT We present quantitative morphology measurements of a sample of optically selected group galaxies at 0.3 < z < 0.55 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and the gim2d surface brightness fitting software package. The group sample is derived from the Canadian Network for Observational Cosmology Field Galaxy Redshift Survey (CNOC2) and follow-up Magellan spectroscopy. We compare these measurements to a similarly selected group sample from the Millennium Galaxy Catalogue (MGC) at 0.05 < z < 0.12. We find that, at both epochs, the group and field fractional bulge luminosity (B/T) distributions differ significantly, with the dominant difference being a deficit of disc-dominated (B/T < 0.2) galaxies in the group samples. At fixed luminosity, z= 0.4 groups have ,5.5 ± 2 per cent fewer disc-dominated galaxies than the field, while by z= 0.1 this difference has increased to ,19 ± 6 per cent. Despite the morphological evolution we see no evidence that the group environment is actively perturbing or otherwise affecting the entire existing disc population. At both redshifts, the discs of group galaxies have similar scaling relations and show similar median asymmetries as the discs of field galaxies. We do find evidence that the fraction of highly asymmetric, bulge-dominated galaxies is 6 ± 3 per cent higher in groups than in the field, suggesting there may be enhanced merging in group environments. We replicate our group samples at z= 0.4 and 0 using the semi-analytic galaxy catalogues of Bower et al. This model accurately reproduces the B/T distributions of the group and field at z= 0.1. However, the model does not reproduce our finding that the deficit of discs in groups has increased significantly since z= 0.4. [source]

    A shallow though extensive H2 2.122-,m imaging survey of Taurus,Auriga,Perseus , I. NGC 1333, L1455, L1448 and B1

    C. J. Davis
    ABSTRACT We discuss wide-field near-infrared (near-IR) imaging of the NGC 1333, L1448, L1455 and B1 star-forming regions in Perseus. The observations have been extracted from a much larger narrow-band imaging survey of the Taurus,Auriga,Perseus complex. These H2 2.122-,m observations are complemented by broad-band K imaging, mid-IR imaging and photometry from the Spitzer Space Telescope, and published submillimetre CO J= 3,2 maps of high-velocity molecular outflows. We detect and label 85 H2 features and associate these with 26 molecular outflows. Three are parsec-scale flows, with a mean flow lobe length exceeding 11.5 arcmin. 37 (44 per cent) of the detected H2 features are associated with a known Herbig,Haro object, while 72 (46 per cent) of catalogued HH objects are detected in H2 emission. Embedded Spitzer sources are identified for all but two of the 26 molecular outflows. These candidate outflow sources all have high near-to-mid-IR spectral indices (mean value of ,, 1.4) as well as red IRAC 3.6,4.5 ,m and IRAC/MIPS 4.5,24.0 ,m colours: 80 per cent have [3.6],[4.5] > 1.0 and [4.5],[24] > 1.5. These criteria , high , and red [4.5],[24] and [3.6],[4.5] colours , are powerful discriminants when searching for molecular outflow sources. However, we find no correlation between , and flow length or opening angle, and the outflows appear randomly orientated in each region. The more massive clouds are associated with a greater number of outflows, which suggests that the star formation efficiency is roughly the same in each region. [source]

    Probing the nature of IGR J16493,4348: spectral and temporal analysis of the 1,100 keV emission

    A. B. Hill
    ABSTRACT IGR J16493,4348 was one of the first new sources to be detected by the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) ,-ray telescope in the 18,100 keV energy band. Based on spatial coincidence, the source was originally associated with the free radio pulsar PSR J1649,4349. Presented here are the results of 2.8 Ms of observations made by the INTEGRAL mission and a 5.6-ks observation with the Swift/X-ray Telescope (XRT). Spectral analysis indicates that the source is best modelled by an absorbed power law with a high energy cut-off at Ecut, 15 keV and a hydrogen absorbing column of NH= 5.4+1.3,1× 1022 cm,2. Analysis of the light curves indicates that the source is a weak, persistent ,-ray emitter showing indications of variability in the 2,9 and 22,100 keV bands. The average source flux is ,1.1 × 10,10 erg cm,2 s,1 in the 1,100 keV energy band. No coherent timing signal is identified at any time-scale in the INTEGRAL or Swift data. The refined source location and positional uncertainty of IGR J16493,4348 places PSR J1649,4349 outside the 90 per cent error circle. We conclude that IGR J16493,4348 is not associated with PSR J1649,4349. Combining the INTEGRAL observations with Swift/XRT data and information gathered by RXTE and Chandra, we suggest that IGR J16493,4348 is an X-ray binary, and that the source characteristics favour a high-mass X-ray binary although a low-mass X-ray binary nature cannot be ruled out. [source]

    Deep spectroscopy of the FUV,optical emission lines from a sample of radio galaxies at z, 2.5: metallicity and ionization,

    A. Humphrey
    ABSTRACT We present long-slit near-infrared (NIR) spectra, obtained using the Infrared Spectrometer And Array Camera (ISAAC) instrument at the Very Large Telescope, which sample the rest-frame optical emission lines from nine radio galaxies at z, 2.5. One-dimensional spectra have been extracted and, using broad-band photometry, have been cross-calibrated with spectra from the literature to produce line spectra spanning a rest wavelength of ,1200,7000 Ĺ. The resulting line spectra have a spectral coverage that is unprecedented for radio galaxies at any redshift. We have also produced a composite of the rest-frame ultraviolet (UV),optical line fluxes of powerful, z, 2.5 radio galaxies. We have investigated the relative strengths of Ly,, H,, H,, He ii,1640 and He ii,4687, and we find that Av can vary significantly from object to object. In addition, we have identified new line ratios to calculate electron temperature: [Ne v],1575/[Ne v],3426, [Ne iv],1602/[Ne iv],2423, O iii],1663/[O iii],5008 and [O ii],2471/[O ii],3728. We calculate an average O iii temperature of 14100+1000,600 K. We have modelled the rich emission line spectra, and we conclude that they are best explained by active galactic nucleus (AGN) photoionization with the ionization parameter U varying between objects. For shock models (with or without the precursor) to provide a satisfactory explanation for the data, an additional source of ionizing photons is required , presumably the ionizing radiation field of the AGN. Single slab photoionization models are unable to reproduce the high- and the low-ionization lines simultaneously: the higher ionization lines imply higher U than do the lower ionization lines. This problem may be alleviated either by combining two or more single slab photoionization models with different U, or by using mixed-medium models such as those of Binette, Wilson & Storchi-Bergmann. In either case, U must vary from object to object. On the basis of N v/N iv] and N iv]/C iv we argue that, while photoionization is the dominant ionization mechanism in the extended emission line regions (EELR), shocks make a fractional contribution (,10 per cent) to its ionization. The N v/N iv] and N iv]/C iv ratios in the broad-line region (BLR) of some quasars suggest that shock ionization may be important in the BLR also. We find that in the EELR of z, 2 radio galaxies the N/H abundance ratio is close to its solar value. We conclude that N/H and metallicity do not vary by more than a factor of 2 in our sample. These results are consistent with the idea that the massive ellipticals which become the hosts to powerful AGN are assembled very early in the history of the universe, and then evolve relatively passively up to the present day. [source]

    Galaxy redshift surveys selected by neutral hydrogen using the Five-hundred metre Aperture Spherical Telescope

    Alan R. Duffy
    ABSTRACT We discuss the possibility of performing a substantial spectroscopic galaxy redshift survey selected via the 21-cm emission from neutral hydrogen using the Five-hundred metre Aperture Spherical Telescope (FAST) to be built in China. We consider issues related to the estimation of the source counts and optimizations of the survey, and discuss the constraints on cosmological models that such a survey could provide. We find that a survey taking around two years could detect ,107 galaxies with an average redshift of ,0.15 making the survey complementary to those already carried out at optical wavelengths. These conservative estimates have used the z= 0 H i mass function and have ignored the possibility of evolution. The results could be used to constrain ,=,mh to 5 per cent and the spectral index, ns, to 7 per cent independent of cosmic microwave background data. If we also use simulated power spectra from the Planck satellite, we can constrain w to be within 5 per cent of ,1. [source]

    Environments of z > 5 quasars: searching for protoclusters at submillimetre wavelengths

    R. S. Priddey
    ABSTRACT We present submillimetre (submm) continuum images of the fields of three luminous quasars at z > 5, obtained at 850 and 450 ,m using the Submillimetre Common-User Bolometer Array on the James Clerk Maxwell Telescope (JCMT). N -body simulations predict that such quasars evolve to become the central dominant galaxies of massive clusters at z= 0, but at z= 5,6 they are actively forming stars and surrounded by a rich protofilamentary structure of young galaxies. Our purpose in taking these images was to search for other luminous, star-forming galaxies in the vicinity of the signpost active galactic nuclei and thus associated with such a protocluster. Two of the quasar host galaxies are luminous submm galaxies (SMGs) in their own right, implying star formation rates ,103 M, yr,1. Despite the coarse 850-,m beam of the JCMT, our images show evidence of extended emission on a scale of ,100 kpc from at least one quasar , indicative of a partially resolved merger or a colossal host galaxy. In addition, at >3, significance we detect 12 (5) SMGs at 850 ,m (450 ,m) in the surrounding fields. Number counts of these SMGs are comparable with those detected in the fields of z, 4 radio galaxies, and both samples are, at the bright end, overabundant by a factor of ,4 relative to blank-field submm surveys. Whilst the redshift-sensitive 850 ,m/450 ,m and 850 ,m/1.4 GHz flux density ratios indicate that some of these SMGs are likely foreground objects, the counts suggest that ,60 per cent lie in the same large-scale structures as the quasars. [source]

    Dust mass-loss rates from asymptotic giant branch stars in the Fornax and Sagittarius dwarf spheroidal galaxies

    Eric Lagadec
    ABSTRACT To study the effect of metallicity on the mass-loss rate of asymptotic giant branch (AGB) stars, we have conducted mid-infrared photometric measurements of such stars in the Sagittarius and Fornax dwarf spheroidal galaxies with the 10-,m camera VISIR at the Very Large Telescope. We derive mass-loss rates for 29 AGB stars in Sgr dSph and two in Fornax. The dust mass-loss rates are estimated from the K,[9] and K,[11] colours. Radiative transfer models are used to check the consistency of the method. Published IRAS and Spitzer data confirm that the same tight correlation between K,[12] colour and dust mass-loss rates is observed for AGB stars from galaxies with different metallicities, i.e., the Galaxy, the Large Magellanic Clouds and the Small Magellanic Clouds. The derived dust mass-loss rates are in the range 5 × 10,10 to 3 × 10,8 M, yr,1 for the observed AGB stars in Sgr dSph and around 5 × 10,9 M, yr,1 for those in Fornax; while values obtained with the two different methods are of the same order of magnitude. The mass-loss rates for these stars are higher than the nuclear burning rates, so they will terminate their AGB phase by the depletion of their stellar mantles before their core can grow significantly. Some observed stars have lower mass-loss rates than the minimum value predicted by theoretical models. [source]

    Measuring stellar magnetic fields with the low-resolution spectropolarimeter of the William Herschel Telescope

    F. Leone
    ABSTRACT Although the influence of magnetic fields on the structure and evolution of stars has, to a great extent, been demonstrated theoretically, observational evidence for this in non-degenerated stars is still rather scarce and is mainly restricted to bright objects (V < 10). Stellar magnetic fields are commonly measured on the basis of circular spectropolarimetry at high/middle resolution across the profile of metal lines. The level of sensitivity of telescopes and spectrographs at present makes this still an almost impossible method for faint stars. In principle, stellar magnetic fields can also be measured on the basis of low-resolution spectropolarimetry, and very important results have been obtained at the 8-m European Southern Observatory telescopes with the Focal Reducer and Low-Dispersion Spectrograph (FORS1). The trade-off between signal-to-noise ratio (S/N) and spectral resolution in measuring stellar magnetic fields justifies an attempt, presented here, to perform these measurements at the 4.5-m William Herschel Telescope. One of the stars with the weakest known magnetic field, HD 3360, and the magnetic chemically peculiar stars, HD 10783, HD 74521 and HD 201601, have been observed with the Intermediate Dispersion Spectrograph and Imaging System (ISIS) in the 3785,4480 Ĺ range. The measured stellar magnetic fields, from Stokes I and V spectra with S/N > 600, show an internal error of ,50 G when selecting the whole interval and ,200 G within a Balmer line. Ripples in the Stokes V spectra of HD 3360 result in an instrumental positive magnetic field certainly no larger than 80 G. [source]

    The polar ring galaxy AM1934,563 revisited,

    Noah Brosch
    ABSTRACT We report long-slit spectroscopic observations of the dust-lane polar ring galaxy AM1934,563 obtained with the Southern African Large Telescope (SALT) during its performance verification phase. The observations target the spectral region of the H,, [N ii] and [S ii] emission lines, but also show deep Na i absorption lines, that we interpret as being produced by stars in the galaxy. We derive rotation curves along the major axis of the galaxy that extend out to about 8 kpc from the centre for both the gaseous and the stellar components, using the emission and absorption lines. We derive similar rotation curves along the major axis of the polar ring and point out differences between these and the ones of the main galaxy. We identify a small diffuse object visible only in H, emission and with a low velocity dispersion as a dwarf H ii galaxy and argue that it is probably metal poor. Its velocity indicates that it is a fourth member of the galaxy group in which AM1934,563 belongs. We discuss the observations in the context of the proposal that the object is the result of tidal mater transfer from a major neighbour galaxy and point out some observational discrepancies from this explanation. We argue that an alternative scenario that could better fit the observations may be the slow accretion of cold intergalactic gas, focused by a dense filament of galaxies in which this object is embedded. Given the pattern of rotation we found, with the asymptotic rotation of the gas in the ring being slower than that in the disc while both components have approximately the same extent, we point out that AM1934,563 may be a galaxy in which a dark matter halo is flattened along the galactic disc and the first object in which this predicted behaviour of polar ring galaxies in dark matter haloes is fulfilled. [source]

    Central kiloparsec of Seyfert and inactive host galaxies: a comparison of two-dimensional stellar and gaseous kinematics

    Gaëlle Dumas
    ABSTRACT We investigate the properties of the two-dimensional distribution and kinematics of ionized gas and stars in the central kiloparsec of a matched sample of nearby active (Seyfert) and inactive galaxies, using the SAURON integral field unit on the William Herschel Telescope. The ionized gas distributions show a range of low-excitation regions, such as star formation rings in Seyfert and inactive galaxies, and high-excitation regions related to photoionization by the active galactic nucleus (AGN). The stellar kinematics of all galaxies in the sample show regular rotation patterns typical of disc-like systems, with kinematic axes that are well aligned with those derived from the outer photometry and provide a reliable representation of the galactic line of nodes. After removal of the non-gravitational components due to, for example, AGN-driven outflows, the ionized gas kinematics in both the Seyfert and inactive galaxies are also dominated by rotation with global alignment between stars and gas in most galaxies. This result is consistent with previous findings from photometric studies that the large-scale light distribution of Seyfert hosts is similar to that of inactive hosts. However, by fully exploiting the two-dimensional nature of our spectroscopic data, deviations from axisymmetric rotation in the gaseous velocity fields are identified, which suggest that the gaseous kinematics are more disturbed at small radii in the Seyfert galaxies compared with the inactive galaxies. This provides a tentative link between nuclear gaseous streaming and nuclear activity. [source]

    A case of mistaken identity?

    GRB 060912A, short GRB divide, the nature of the long
    ABSTRACT We investigate the origin of the GRB 060912A, which has observational properties that make its classification as either a long or short burst ambiguous. Short-duration gamma-ray bursts (SGRBs) are thought to have typically lower energies than long-duration bursts, can be found in galaxies with populations of all ages and are likely to originate from different progenitors to the long-duration bursts. However, it has become clear that duration alone is insufficient to make a distinction between the two populations in many cases, leading to a desire to find additional discriminators of burst type. GRB 060912A had a duration of 6 s and occurred only ,10 arcsec from a bright, low-redshift (z= 0.0936) elliptical galaxy, suggesting that this may have been the host, which would favour it being a short burst. However, our deep optical imaging and spectroscopy of the location of GRB 060912A using the Very Large Telescope (VLT) shows that GRB 060912A more likely originates in a distant star-forming galaxy at z= 0.937, and is most likely a long burst. This demonstrates the risk in identifying bright, nearby galaxies as the hosts of given gamma-ray bursts (GRBs) without further supporting evidence. Further, it implies that, in the absence of secure identifications, ,host' type, or more broadly discriminators that rely on galaxy redshifts, may not be good indicators of the true nature of any given GRB. [source]

    Imaging and spectroscopy of ultrasteep spectrum radio sources,

    Carlos G. Bornancini
    ABSTRACT We present a sample of 40 ultrasteep spectrum (USS; ,,, 1.3, S,,,,) radio sources selected from the Westerbork in the Southern Hemisphere (WISH) catalogue. The USS sources have been imaged in K band at the Cerro Tololo Inter-American Observatory (CTIO) and with the Very Large Telescope (VLT) at Cerro Paranal. We also present VLT, Keck and William Herschel Telescope (WHT) optical spectroscopy of 14 targets selection from four different USS samples. For 12 sources, we have been able to determine the redshifts, including four new radio galaxies at z > 3. We find that most of our USS sources have predominantly small (<6 arcsec) radio sizes and faint magnitudes (K, 18). The mean K -band counterpart magnitude is . The expected redshift distribution estimated using the Hubble K,z diagram has a mean of , which is higher than the predicted redshift obtained for the Sydney University Molonglo Sky Survey,NRAO VLA Sky Survey (SUMSS,NVSS) sample and the expected redshift obtained in the 6C** survey. The compact USS sample analysed here may contain a higher fraction of galaxies which are high redshift and/or are heavily obscured by dust. Using the 74, 352 and 1400 MHz flux densities of a subsample, we construct a radio colour,colour diagram. We find that all but one of our USS sources have a strong tendency to flatten below 352 MHz. We also find that the highest redshift source from this paper (at z= 3.84) does not show evidence for spectral flattening down to 151 MHz. This suggests that very low frequency selected USS samples will likely be more efficient to find high redshift galaxies. [source]

    The properties of Jovian Trojan asteroids listed in SDSS Moving Object Catalogue 3

    Gy. M. Szabó
    ABSTRACT We analyse 1187 observations of about 860 unique candidate Jovian Trojan asteroids listed in the 3rd release of the Sloan Digital Sky Survey (SDSS) Moving Object Catalogue. The sample is complete at the faint end to r= 21.2 mag (apparent brightness) and H= 13.8 (absolute brightness, approximately corresponding to 10 km diameter). A subset of 297 detections of previously known Trojans were used to design and optimize a selection method based on observed angular velocity that resulted in the remaining objects. Using a sample of objects with known orbits, we estimate that the candidate sample contamination is about 3 per cent. The well-controlled selection effects, the sample size, depth and accurate five-band UV,IR photometry enabled several new findings and the placement of older results on a firmer statistical footing. We find that there are significantly more asteroids in the leading swarm (L4) than in the trailing swarm (L5): N(L4)/N(L5) = 1.6 ± 0.1, independently of limiting object's size. The overall counts normalization suggests that there are about as many Jovians Trojans as there are main-belt asteroids down to the same size limit, in agreement with earlier estimates. We find that Trojan asteroids have a remarkably narrow colour distribution (root mean scatter of only ,0.05 mag) that is significantly different from the colour distribution of the main-belt asteroids. The colour of Trojan asteroids is correlated with their orbital inclination, in a similar way for both swarms, but appears uncorrelated with the object's size. We extrapolate the results presented here and estimate that the Large Synoptic Survey Telescope will determine orbits, accurate colours and measure light curves in six photometric bandpasses for about 100 000 Jovian Trojan asteroids. [source]

    Spitzer observations of M83 and the hot star, H ii region connection

    Robert H. Rubin
    ABSTRACT We have undertaken a programme to observe emission lines of [S iv] 10.51, [Ne ii] 12.81, [Ne iii] 15.56, and [S iii] 18.71 ,m in a number of extragalactic H ii regions with the Spitzer Space Telescope. Here we report our results for the nearly face-on spiral galaxy M83. A subsequent paper will present our data and analysis for another substantially face-on spiral galaxy M33. The nebulae selected cover a wide range of galactocentric radii (RG). The observations were made with the infrared spectrograph in the short wavelength, high dispersion configuration. The above set of four lines is observed cospatially, thus permitting a reliable comparison of the fluxes. From the measured fluxes, we determine the ionic abundance ratios including Ne++/Ne+, S3+/S++ and S++/Ne+ and find that there is a correlation of increasingly higher ionization with larger RG. By sampling the dominant ionization states of Ne and S for H ii regions, we can approximate the Ne/S ratio by (Ne++ Ne++)/(S+++ S3+). Our findings of ratios that significantly exceed the benchmark Orion Nebula value, as well as a decrease in this ratio with increasing RG, are more likely due to other effects than a true gradient in Ne/S. Two effects that will tend to lower these high estimates and to flatten the gradient are first, the method does not account for the presence of S+ and second, S but not Ne is incorporated into grains. Both Ne and S are primary elements produced in ,-chain reactions, following C and O burning in stars, making their yields depend very little on the stellar metallicity. Thus, it is expected that Ne/S remains relatively constant throughout a galaxy. We stress that this type of observation and method of analysis does have the potential for accurate measurements of Ne/S, particularly for H ii regions that have lower metallicity and higher ionization than those here, such as those in M33. Our observations may also be used to test the predicted ionizing spectral energy distribution (SED) of various stellar atmosphere models. We compare the ratio of fractional ionizations ,Ne++,/,S++, and ,Ne++,/,S3+, versus ,S3+,/,S++, with predictions made from our photoionization models using several of the state-of-the-art stellar atmosphere model grids. The overall best fit appears to be the nebular models using the supergiant stellar atmosphere models of Pauldrach, Hoffmann & Lennon and Sternberg, Hoffmann & Pauldrach. This result is not sensitive to the electron density and temperature range expected for these M83 nebulae. Considerable computational effort has gone into the comparison between data and models, although not all parameter studies have yet been performed on an ultimate level (e.g. in the present paper the stellar atmosphere model abundances have been fixed to solar values). A future paper, with the benefit of more observational data, will continue these studies to further discriminate how the ionic ratios depend on the SED and the other nebular parameters. [source]

    The first appearance of the red sequence of galaxies in proto-clusters at 2 ,z, 3

    Tadayuki Kodama
    ABSTRACT We explore the evolved galaxy population in the proto-clusters around four high- z radio galaxies at 2 ,z, 3 based on wide-field near-infrared (NIR) imaging. Three of the four fields are known proto-clusters as demonstrated by overdensities of line-emitting galaxies at the same redshifts as the radio galaxies found by narrow-band surveys and spectroscopic follow-up observations. We imaged the fields of three targets (PKS 1138,262, USS 0943,242 and MRC 0316,257) to a depth of Ks, 22 (Vega magnitude, 5,) over a 4 × 7 arcmin2 area centred on the radio galaxies with a new wide-field NIR camera, Multi-Object Infra-Red Camera and Spectrograph (MOIRCS), on the Subaru Telescope. Another target (USS 1558,003) was observed with Son of ISAAC on the New technology Telescope (NTT) to a depth of Ks= 20.5 (5,) over a 5 × 5 arcmin2 area. We apply colour cuts in J,Ks and/or JHKs in order to exclusively search for galaxies located at high redshifts: z > 2. To the 5, limiting magnitudes, we see a significant excess of NIR-selected galaxies by a factor of 2 to 3 compared to those found in the field of GOODS-South. The spatial distribution of these NIR-selected galaxies is not uniform and traces structures similar to those of emission-line galaxies, although the samples of NIR-selected galaxies and emitters show little overlap, from which we conclude that the former tend to be an evolved population with much higher stellar mass than the latter, young and active emitters. We focus on the NIR colour,magnitude sequence of the evolved population and find that the bright-end (Mstars > 1011 M,) of the red sequence is well populated by z, 2 but much less so in the z, 3 proto-clusters. This may imply that the bright-end of the colour,magnitude sequence first appeared between z= 3 and 2, an era coinciding with the appearance of sub-mm galaxies and the peak of the cosmic star formation rate. Our observations show that during the same epoch, massive galaxies are forming in high-density environments by vigorous star formation and assembly. [source]

    Structural parameters of Mayall II = G1 in M31

    J. Ma
    ABSTRACT Mayall II = G1 is one of the most luminous globular clusters (GCs) known in M31. New deep, high-resolution observations with the Advanced Camera for Surveys on the Hubble Space Telescope are used to provide accurate photometric data to the smallest radii yet. In particular, we present the precise variation of ellipticity and position angle, and of surface brightness for the core of the object. Based on these accurate photometric data, we redetermine the structural parameters of G1 by fitting a single-mass isotropic King model. We derive a core radius, rc= 0.21 ± 0.01 arcsec (= 0.78 ± 0.04 pc), a tidal radius, rt= 21.8 ± 1.1 arcsec (= 80.7 ± 3.9 pc), and a concentration index c= log (rt/rc) = 2.01 ± 0.02. The central surface brightness is 13.510 mag arcsec,2. We also calculate the half-light radius, at rh= 1.73 ± 0.07 arcsec (= 6.5 ± 0.3 pc). The results show that, within 10 core radii, a King model fits the surface brightness distribution well. We find that this object falls in the same region of the MV versus log Rh diagram as , Centauri, M54 and NGC 2419 in the Milky Way. All three of these objects have been claimed to be the stripped cores of now defunct dwarf galaxies. We discuss in detail whether GCs, stripped cores of dwarf spheroidals and normal dwarf galaxies form a continuous distribution in the MV versus log Rh plane, or if GCs and dwarf spheroidals constitute distinct classes of objects; we present arguments in favour of this latter view. [source]

    Gravitational lensing by cosmic strings: what we learn from the CSL-1 case

    M. V. Sazhin
    ABSTRACT Cosmic strings were postulated by Kibble in 1976 and, from a theoretical point of view, their existence finds support in modern superstring theories, both in compactification models and in theories with extended additional dimensions. Their eventual discovery would lead to significant advances in both cosmology and fundamental physics. One of the most effective ways to detect cosmic strings is through their lensing signatures which appear to be significantly different from those introduced by standard lenses (i.e. compact clumps of matter). In 2003, the discovery of the peculiar object CSL-1 raised the interest of the physics community since its morphology and spectral features strongly argued in favour of it being the first case of gravitational lensing by a cosmic string. In this paper we provide a detailed description of the expected observational effects of a cosmic string and show, by means of simulations, the lensing signatures produced on background galaxies. While high angular resolution images obtained with Hubble Space Telescope, revealed that CSL-1 is a pair of interacting ellipticals at redshift 0.46, it represents a useful lesson to plan future surveys. [source]

    A highly obscured and strongly clustered galaxy population discovered with the Spitzer Space Telescope

    M. Magliocchetti
    ABSTRACT The ,800 optically unseen (R > 25.5) 24-,m selected sources in the complete Spitzer First Look Survey sample with F24 ,m, 0.35 mJy are found to be very strongly clustered. If, as indicated by several lines of circumstantial evidence, they are ultraluminous far-infrared galaxies at z, 1.6,2.7, the amplitude of their spatial correlation function is very high. The associated comoving clustering length is estimated to be r0= 14.0+2.1,2.4 Mpc, value which puts these sources amongst the most strongly clustered populations of our known Universe. Their 8,24 ,m colours suggest that the active galactic nucleus contribution dominates above F24 ,m, 0.8 mJy, consistent with earlier analyses. The properties of these objects (number counts, redshift distribution, clustering amplitude) are fully consistent with those of proto-spheroidal galaxies in the process of forming most of their stars and of growing their active nucleus, as described by the Granato et al. model. In particular, the inferred space density of such galaxies at z, 2 is much higher than what is expected from most semi-analytic models. Matches of the observed projected correlation function w(,) with models derived within the so-called halo occupation scenario show that these sources have to be hosted by haloes more massive than ,1013.4 M,. This value is significantly higher than that for the typical galactic haloes hosting massive elliptical galaxies, suggesting a duration of the starburst phase of massive high-redshift dusty galaxies of TB, 0.5 Gyr. [source]