Home About us Contact | |||
Tectonic Stages (tectonic + stage)
Selected AbstractsTectonic Evolution of the Middle Frontal Area of the Longmen Mountain Thrust Belt, Western Sichuan Basin, ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2009Wenzheng JIN Abstract: By analyzing the balanced cross sections and subsidence history of the Longmen Mountain thrust belt, China, we concluded that it had experienced five tectonic stages: (1) the formation stage (T3x) of the miniature of Longmen Mountain, early Indosinian movement, and Anxian tectonic movement created the Longmen Mountain; (2) the stable tectonic stage (J1) where weaker tectonic movement resulted in the Longmen Mountain thrust belt being slightly uplifted and slightly subsiding the foreland basin; (3) the intense tectonic stage (J2.3), namely the early Yanshan movement; (4) continuous tectonic movement (K-E), namely the late Yanshan movement and early Himalayan movement; and (5) the formation of Longmen Mountain (N-Q), namely the late Himalayan movement. During those tectonic deformation stages, the Anxian movement and Himalayan movement played important roles in the Longmen Mountain's formation. The Himalayan movement affected Longmen Mountain the most; the strata thrust intensively and were eroded severely. There are some klippes in the middle part of the Longmen Mountain thrust belt because a few nappes were pushed southeastward in later tectonic deformation. [source] Steering of experimental channels by lateral basin tiltingBASIN RESEARCH, Issue 3 2010Wonsuck Kim ABSTRACT A major issue in tectonics and sedimentation is the role of cross-stream tectonic tilting in steering channels. The general idea is that channels will be attracted to lateral maxima in subsidence rate. A physical experiment performed in 1999 at the St. Anthony Falls Laboratory, however, was in conflict with the idea and showed that fluvial channels and resulting stratigraphy can be insensitive to even relatively strong lateral variation in subsidence. Here, we present results from an experiment which uses a simplified relay-ramp geometry with laterally variable uplift and subsidence to test a hypothesis developed from the earlier experiment: Tectonic tilting steers channels only when the ratio of the time scales describing lateral channel mobility to tectonic deformation is sufficiently large. Occupation time by experimental channels and sand fraction in the deposit (a proxy for channel deposition) both increase with subsidence rate indicating strong steering of channels by tectonic forcing. We also found that, due to local incision, uplift lengthened the time scale for lateral channel migration relative to subsidence. Comparing channel mobility at the beginning of the experiment, with no tectonic forcing, to later tectonic stages of the experiment indicates that active tectonics increased the channel time scale. The interplay of channel steering with uplift and subsidence led to cyclic appearance and disappearance of an autogenic lake in the hanging-wall basin. This lake was associated with alternation between channels going around vs. across the adjoining upstream uplifted footwall region. This creation and filling of the lake under constant tectonic forcing (constant fault slip rate) in the hanging wall created subaerial fan-delta parasequences separated by fluvial deposits. [source] Hydrocarbon Generation Evolution of Permo-Carboniferous Rocks of the Bohai Bay Basin in ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2010Yanming ZHU Abstract: The Bohai Bay Basin is a Mesozoic subsidence and Cenozoic rift basin in the North China Craton. Since the deposition of the Permo-Carboniferous hydrocarbon source rock, the basin has undergone many tectonic events. The source rocks have undergone non-uniform uplift, twisting, deep burying, and magmatism and that led to an interrupted or stepwise during the evolution of hydrocarbon source rocks. We have investigated the Permo-Carboniferous hydrocarbon source rocks history of burying, heating, and hydrocarbon generation, not only on the basis of tectonic disturbance and deeply buried but also with new studies on apatite fission track analysis, fluid inclusion measurements, and the application of the numerical simulation of EASY %Ro. The heating temperature of the source rocks continued to rise from the Indosinian to Himalayan stage and reached a maximum at the Late Himalayan. This led to the stepwise increases during organic maturation and multiple stages of hydrocarbon generation. The study delineated the tectonic stages, the intensity of hydrocarbon generation and spatial and temporal distribution of hydrocarbon generations. The hydrocarbon generation occurred during the Indosinian, Yanshanian, and particularly Late Himalayan. The hydrocarbon generation during the late Himalayan stage is the most important one for the Permo-Carboniferous source rocks of the Bohai Bay Basin in China. [source] Tectonic Evolution of the Middle Frontal Area of the Longmen Mountain Thrust Belt, Western Sichuan Basin, ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2009Wenzheng JIN Abstract: By analyzing the balanced cross sections and subsidence history of the Longmen Mountain thrust belt, China, we concluded that it had experienced five tectonic stages: (1) the formation stage (T3x) of the miniature of Longmen Mountain, early Indosinian movement, and Anxian tectonic movement created the Longmen Mountain; (2) the stable tectonic stage (J1) where weaker tectonic movement resulted in the Longmen Mountain thrust belt being slightly uplifted and slightly subsiding the foreland basin; (3) the intense tectonic stage (J2.3), namely the early Yanshan movement; (4) continuous tectonic movement (K-E), namely the late Yanshan movement and early Himalayan movement; and (5) the formation of Longmen Mountain (N-Q), namely the late Himalayan movement. During those tectonic deformation stages, the Anxian movement and Himalayan movement played important roles in the Longmen Mountain's formation. The Himalayan movement affected Longmen Mountain the most; the strata thrust intensively and were eroded severely. There are some klippes in the middle part of the Longmen Mountain thrust belt because a few nappes were pushed southeastward in later tectonic deformation. [source] |