Home About us Contact | |||
Tectonic Regime (tectonic + regime)
Selected AbstractsOrigin, age and petrogenesis of Neoproterozoic composite dikes from the Arabian-Nubian Shield, SW JordanGEOLOGICAL JOURNAL, Issue 2 2004G. Jarrar Abstract The evolution of a Pan-African (c. 900,550,Ma) suite of composite dikes, with latite margins and rhyolite interiors, from southwest Jordan is discussed. The dikes cut the Neoproterozoic calc-alkaline granitoids and high-grade metamorphic rocks (c. 800,600,Ma) of the northern Arabian-Nubian Shield in Jordan and have been dated by the Rb-Sr isochron method at 566±7,Ma. The symmetrically distributed latite margins constitute less than one-quarter of the whole dike thickness. The rhyolite intruded a median fracture within the latite, while the latter was still hot but completely solidified. The dikes are alkaline and bimodal in composition with a gap in SiO2 between 61 and 74,wt%. Both end members display similar chondrite-normalized rare earth element patterns. The rhyolites display the compositional signature of A-type granites. The (La/Lu)N values are 6.02 and 4.91 for latites and rhyolites, respectively, and the rhyolites show a pronounced negative Eu anomaly, in contrast to the slight negative Eu anomaly of the latites. The chemical variability (e.g. Zr/Y, Zr/Nb, K/Rb) within and between latites and rhyolites does not support a fractional crystallization relationship between the felsic and mafic members of the dikes. We interpret the magma genesis of the composite dikes as the result of intrusion of mantle-derived mafic magma into the lower crust in an extensional tectonic regime. The mafic magma underwent extensive fractional crystallization, which supplied the necessary heat for melting of the lower crust. The products of the initial stages of partial melting (5,10%) mixed with the fractionating mafic magma and gave rise to the latite melts. Further partial melting of the lower crust (up to 30%) produced a felsic melt, which upon 50% fractional crystallization (hornblende 15%, biotite 5%, feldspars 60%, and quartz 20%) gave rise to the rhyolitic magma. Copyright © 2004 John Wiley & Sons, Ltd. [source] Tectonic deformation of the Indochina Peninsula recorded in the Mesozoic palaeomagnetic resultsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2009Kazuhiro Takemoto SUMMARY In order to describe features of tectonic deformation in the Indochina Peninsula, Early Jurassic to Early Cretaceous red sandstones were sampled at three localities in the Shan-Thai and Indochina blocks. Stepwise thermal treatment of most samples revealed the presence of characteristic remanent magnetization, which is generally unblocked by 680 °C. This component from Phong Saly (21.6°N, 101.9°E) and Borikhanxay (18.5°N, 103.8°E) localities yield positive fold tests with Late Jurassic,Early Cretaceous directions of Dec/Inc = 28.8°/32.1° (ks= 15.4, ,95= 8.8°, N= 22) and Dec/Inc = 42.1°/46.9° (ks= 20.1, ,95= 7.9°, N= 18), respectively. Additionally, a syn-folding mid-Cretaceous characteristic magnetization is observed in the samples of Muang Phin locality (16.5°N, 106.1°E), which gave a mean direction of Dec/Inc = 30.8°/39.9°, k= 102.6, ,95= 3.0°, N= 23. This reliable Late Jurassic to Mid-Cretaceous palaeomagnetic directions from three different localities are incorporated into a palaeomagnetic database for Shan-Thai and Indochina blocks. Based on these compilations, tectonic deformation of the Shan-Thai and Indochina blocks is summarized as follows: (1) the Shan-Thai and Indochina blocks experienced a clockwise rotation of about 10° as a composite unit in the early stage of India,Asia collision and (2) following this, the Shan-Thai Block underwent an internal tectonic deformation, whereas the Indochina Block behaved as a rigid tectonic unit during the same period. Comparison of our palaeomagnetic results with seismic tomographic images suggests that the strength of continental lithosphere beneath these blocks played an important role in the process of deformation rather than any other tectonic regime. In contrast to the Shan-Thai Block, an existence of continental roots beneath the Indochina Block prevented its internal deformation. [source] Analyses of the stress field in southeastern France from earthquake focal mechanismsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2001Emmanuel Baroux Summary Owing to the apparent deformation field heterogeneity, the stress regimes around the Provence block, from the fronts of the Massif Central and Alpine range up to the Ligurian Sea, have not been well defined. To improve the understanding of the SE France stress field, we determine new earthquake focal mechanisms and compute the present-day stress states by inversion of the 89 available focal mechanisms around the Provence domain, including 17 new ones calculated in the current study. This study provides evidence of six distinct deformation domains around the Provence block, with different tectonic regimes. On a regional scale, we identify three zones characterized by significantly different stress regimes: a western one affected by an extensional stress (normal faulting) regime; a southeastern one characterized by a compressional stress (reverse to strike-slip faulting) regime with NNW- to WNW-trending ,1; and a northeastern one, namely the Digne nappe front, marked by a NE-trending compression. Note that the Digne nappe back domain is controlled by an extensional regime that is deforming the western Alpine core. This extensional regime could be a response to buoyancy forces related to the Alpine high topography. The stress regimes in the southeast of the Argentera Massif and around the Durance fault are consistent with a coherent NNW-trending ,1, implying a left-lateral component of the active reverse oblique slip of the Moyenne Durance Fault. In the Rhone Valley, an E-trending extension characterizes the tectonic regime, implying a normal component of the present-day N,^mes fault displacement. This study provides evidence for short-scale variation of the stress states, which arises from abrupt changes in the boundary force influences on upper crustal fragments (blocks). These spatial stress changes around the Provence block result from the coeval influence of forces applied at both its extremities, namely in the northeast the Alpine front push, and in the southeast the northward African plate drift. In addition to these boundary forces, the mantle plume under the Massif Central influences the western block boundary. [source] LPHT metamorphism in a late orogenic transpressional setting, Albera Massif, NE Iberia: implications for the geodynamic evolution of the Variscan PyreneesJOURNAL OF METAMORPHIC GEOLOGY, Issue 3 2007M. VILÀ Abstract During the Late Palaeozoic Variscan Orogeny, Cambro-Ordovician and/or Neoproterozoic metasedimentary rocks of the Albera Massif (Eastern Pyrenees) were subject to low-pressure/high-temperature (LPHT) regional metamorphism, with the development of a sequence of prograde metamorphic zones (chlorite-muscovite, biotite, andalusite-cordierite, sillimanite and migmatite). LPHT metamorphism and magmatism occurred in a broadly compressional tectonic regime, which started with a phase of southward thrusting (D1) and ended with a wrench-dominated dextral transpressional event (D2). D1 occurred under prograde metamorphic conditions. D2 started before the P,T metamorphic climax and continued during and after the metamorphic peak, and was associated with igneous activity. P,T estimates show that rocks from the biotite-in isograd reached peak-metamorphic conditions of 2.5 kbar, 400 °C; rocks in the low-grade part of the andalusite-cordierite zone reached peak metamorphic conditions of 2.8 kbar, 535 °C; rocks located at the transition between andalusite-cordierite zone and the sillimanite zone reached peak metamorphic conditions of 3.3 kbar, 625 °C; rocks located at the beginning of the anatectic domain reached peak metamorphic conditions of 3.5 kbar, 655 °C; and rocks located at the bottom of the metamorphic series of the massif reached peak metamorphic conditions of 4.5 kbar, 730 °C. A clockwise P,T trajectory is inferred using a combination of reaction microstructures with appropriate P,T pseudosections. It is proposed that heat from asthenospheric material that rose to shallow mantle levels provided the ultimate heat source for the LPHT metamorphism and extensive lower crustal melting, generating various types of granitoid magmas. This thermal pulse occurred during an episode of transpression, and is interpreted to reflect breakoff of the underlying, downwarped mantle lithosphere during the final stages of oblique continental collision. [source] Late Miocene,Pliocene eclogite facies metamorphism, D'Entrecasteaux Islands, SE Papua New GuineaJOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2007B. D. MONTELEONE Abstract The D'Entrecasteaux Islands of south-eastern Papua New Guinea are active metamorphic core complexes that formed within a region where the plate tectonic regime has transitioned from subduction to rifting. While rapid, post 4 Myr exhumation and cooling of amphibolite and greenschist facies rocks that constitute the footwall of the crustal scale detachment fault system have been previously documented on Fergusson and Goodenough Islands of the D'Entrecasteaux chain, the timing of eclogite facies metamorphism in rocks of the footwall was unknown. Recent work revealed that at least one of the eclogite bodies formed during the Pliocene. We present combined in situ ion microprobe U,Pb age analyses of zircon from five variably retrogressed eclogite samples from Fergusson and Goodenough Islands that document Late Miocene,Pliocene (8,2 Ma) eclogite formation on these islands. Textural relationships and zircon,garnet rare earth element partition coefficients indicate that U,Pb ages constrain zircon crystallization under eclogite facies conditions in all samples. Results suggest westward younging of eclogite facies metamorphism from Fergusson to Goodenough Island. Present-day exposure of Late Miocene,Pliocene eclogites requires exhumation rates > 2.5 cm yr,1. [source] Fluid Evolution and Metallogenic Dynamics during Tectonic Regime Transition: Example from the Jiapigou Gold Belt in Northeast ChinaRESOURCE GEOLOGY, Issue 2 2009Jun Deng Abstract The Jiapigou gold belt, one of the most important gold-producing districts in China, is located in the northern margin of the North China Craton (NCC). The tectonic evolution of the gold belt is closely related to the Siberian Plate (SP) in the north, Yangtze Craton (YC) in the south and Pacific Plate in the east. In order to investigate the nature of the tectono-fluid-metallogenic system, the authors investigated the relationships among the tectonic regimes, fluid evolution and metallogenesis. This paper examined the corresponding spatial,temporal relationship between the ore-controlling tectonic regime and hydrothermal fluid evolution in the Jiapigou gold belt. There are two types of gold mineralization: disseminated ores that are distributed within the NW-trending main ductile shear zone and gold-bearing quartz veins and minor disseminated ores that are distant to the ductile shear zone. The fluid inclusions in quartz contain a large amount of CO2. Metamorphic fluids of middle to high temperatures and pressures and meteoric waters of low temperatures and pressures mixed together during mineralization. A proposed ore-forming model is as follows: in the pre-ore phase, the collision of SP and NCC resulted in the NS-trending compression of the ore belt. This formed the NE-trending and NW-trending shear faults and EW-trending folds. During the ore-forming phase, the collision of YC and NCC resulted in dextral shearing of the NW-trending Jiapigou fault and the NE-trending Green faults. High-pressure fluids caused by the compression flowed into the dilatant zone. This may have caused both phase separation of CO2 -bearing fluids and the mixing of meteoric waters, metamorphic waters and magmatic source fluids and finally resulted in the disequilibrium of the ore fluids and precipitation of ore minerals. [source] Mid,Cretaceous Episodic Magmatism and Tin Mineralization in Khingan-Okhotsk Volcano,Plutonic Belt, Far East RussiaRESOURCE GEOLOGY, Issue 1 2002Kohei SATO Abstract: Age of magmatism and tin mineralization in the Khingan-Okhotsk volcano,plutonic belt, including the Khingan, Badzhal and Komsomolsk tin fields, were reviewed in terms of tectonic history of the continental margin of East Asia. This belt consists mainly of felsic volcanic rocks and granitoids of the reduced type, being free of remarkable geomagnetic anomaly, in contrast with the northern Sikhote-Alin volcano,plutonic belt dominated by oxidized-type rocks and gold mineralization. The northern end of the Khingan-Okhotsk belt near the Sea of Okhotsk, accompanied by positive geomagnetic anomalies, may have been overprinted by magmatism of the Sikhote-Alin belt. Tin,associated magmatism in the Khingan-Okhotsk belt extending over 400 km occurred episodically in a short period (9510 Ma) in the middle Cretaceous time, which is coeval with the accretion of the Kiselevka-Manoma complex, the youngest accretionary wedge in the eastern margin of the Khingan-Okhotsk accretionary terranes. The episodic magmatism is in contrast with the Cretaceous-Paleogene long,lasted magmatism in Sikhote,Alin, indicating the two belts are essentially different arcs, rather than juxtaposed arcs derived from a single arc. The tin-associated magmatism may have been caused by the subduction of a young and hot back-arc basin, which is inferred from oceanic plate stratigraphy of the coeval accre-tionary complex and its heavy mineral assemblage of immature volcanic arc provenance. The subduction of the young basin may have resulted in dominance of the reduced-type felsic magmas due to incorporation of carbonaceous sediments within the accretionary complex near the trench. Subsequently, the back-arc basin may have been closed by the oblique collision of the accretionary terranes in Sikhote,Alin, which was subjected to the Late Cretaceous to Paleogene magmatism related to another younger subduction system. These processes could have proceeded under transpressional tectonic regime due to oblique subduction of the paleo-Pacific plates under Eurasian continent. [source] The tectonic regime along the Andes: Present-day and Mesozoic regimesGEOLOGICAL JOURNAL, Issue 1 2010Victor A. Ramos Abstract The analyses of the main parameters controlling the present Chile-type and Marianas-type tectonic settings developed along the eastern Pacific region show four different tectonic regimes: (1) a nearly neutral regime in the Oregon subduction zone; (2) major extensional regimes as the Nicaragua subduction zone developed in continental crust; (3) a Marianas setting in the Sandwich subduction zone with ocean floored back-arc basin with a unique west-dipping subduction zone and (4) the classic and dominant Chile-type under compression. The magmatic, structural and sedimentary behaviours of these four settings are discussed to understand the past tectonic regimes in the Mesozoic Andes based on their present geological and tectonic characteristics. The evaluation of the different parameters that governed the past and present tectonic regimes indicates that absolute motion of the upper plate relative to the hotspot frame and the consequent trench roll-back velocity are the first order parameters that control the deformation. Locally, the influences of the trench fill, linked to the dominant climate in the forearc, and the age of the subducted oceanic crust, have secondary roles. Ridge collisions of seismic and seismic oceanic ridges as well as fracture zone collisions have also a local outcome, and may produce an increase in coupling that reinforces compressional deformation. Local strain variations in the past and present Andes are not related with changes in the relative convergence rate, which is less important than the absolute motion relative to the Pacific hotspot frame, or changes in the thermal state of the upper plate. Changes in the slab dip, mainly those linked to steepening subduction zones, produce significant variations in the thermal state, that are important to generate extreme deformation in the foreland. Copyright © 2009 John Wiley & Sons, Ltd. [source] Analyses of the stress field in southeastern France from earthquake focal mechanismsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2001Emmanuel Baroux Summary Owing to the apparent deformation field heterogeneity, the stress regimes around the Provence block, from the fronts of the Massif Central and Alpine range up to the Ligurian Sea, have not been well defined. To improve the understanding of the SE France stress field, we determine new earthquake focal mechanisms and compute the present-day stress states by inversion of the 89 available focal mechanisms around the Provence domain, including 17 new ones calculated in the current study. This study provides evidence of six distinct deformation domains around the Provence block, with different tectonic regimes. On a regional scale, we identify three zones characterized by significantly different stress regimes: a western one affected by an extensional stress (normal faulting) regime; a southeastern one characterized by a compressional stress (reverse to strike-slip faulting) regime with NNW- to WNW-trending ,1; and a northeastern one, namely the Digne nappe front, marked by a NE-trending compression. Note that the Digne nappe back domain is controlled by an extensional regime that is deforming the western Alpine core. This extensional regime could be a response to buoyancy forces related to the Alpine high topography. The stress regimes in the southeast of the Argentera Massif and around the Durance fault are consistent with a coherent NNW-trending ,1, implying a left-lateral component of the active reverse oblique slip of the Moyenne Durance Fault. In the Rhone Valley, an E-trending extension characterizes the tectonic regime, implying a normal component of the present-day N,^mes fault displacement. This study provides evidence for short-scale variation of the stress states, which arises from abrupt changes in the boundary force influences on upper crustal fragments (blocks). These spatial stress changes around the Provence block result from the coeval influence of forces applied at both its extremities, namely in the northeast the Alpine front push, and in the southeast the northward African plate drift. In addition to these boundary forces, the mantle plume under the Massif Central influences the western block boundary. [source] Fluid Evolution and Metallogenic Dynamics during Tectonic Regime Transition: Example from the Jiapigou Gold Belt in Northeast ChinaRESOURCE GEOLOGY, Issue 2 2009Jun Deng Abstract The Jiapigou gold belt, one of the most important gold-producing districts in China, is located in the northern margin of the North China Craton (NCC). The tectonic evolution of the gold belt is closely related to the Siberian Plate (SP) in the north, Yangtze Craton (YC) in the south and Pacific Plate in the east. In order to investigate the nature of the tectono-fluid-metallogenic system, the authors investigated the relationships among the tectonic regimes, fluid evolution and metallogenesis. This paper examined the corresponding spatial,temporal relationship between the ore-controlling tectonic regime and hydrothermal fluid evolution in the Jiapigou gold belt. There are two types of gold mineralization: disseminated ores that are distributed within the NW-trending main ductile shear zone and gold-bearing quartz veins and minor disseminated ores that are distant to the ductile shear zone. The fluid inclusions in quartz contain a large amount of CO2. Metamorphic fluids of middle to high temperatures and pressures and meteoric waters of low temperatures and pressures mixed together during mineralization. A proposed ore-forming model is as follows: in the pre-ore phase, the collision of SP and NCC resulted in the NS-trending compression of the ore belt. This formed the NE-trending and NW-trending shear faults and EW-trending folds. During the ore-forming phase, the collision of YC and NCC resulted in dextral shearing of the NW-trending Jiapigou fault and the NE-trending Green faults. High-pressure fluids caused by the compression flowed into the dilatant zone. This may have caused both phase separation of CO2 -bearing fluids and the mixing of meteoric waters, metamorphic waters and magmatic source fluids and finally resulted in the disequilibrium of the ore fluids and precipitation of ore minerals. [source] |