Technology Uncertainty (technology + uncertainty)

Distribution by Scientific Domains


Selected Abstracts


The Exclusion Theorem in the Weberian Space

JOURNAL OF REGIONAL SCIENCE, Issue 1 2000
Song-Ken Hsu
In this paper we employ a unifying approach to examine the exclusion theorem in a Weberian space under various types of uncertainty: input price or output price uncertainty, transport rate uncertainty, and technology uncertainty. The novelty of our approach is the usage of second-order conditions and comparative static analysis in the derivation of conditions for thevalidity of the exclusion theorem. Our main results are new and some are generalizations of those obtained in prior studies. [source]


Environmental Uncertainty and Strategic Supply Management: A Resource Dependence Perspective and Performance Implications

JOURNAL OF SUPPLY CHAIN MANAGEMENT, Issue 3 2007
Antony Paulraj
SUMMARY Environmental uncertainty plays a crucial role in the implementation of strategic supply management initiatives. The current study adopts the resource dependence theory to explain the direct effect of supply chain uncertainties on strategic supply management, operationalized as a second-order construct comprising strategic purchasing, long-term relationship orientation, interfirm communication, cross-organizational teams and supplier integration. Using structural equation modeling, the 200-firm sample provided evidence that strategic supply management is driven by supply and technology uncertainty. Demand uncertainty, on the other hand, was not found to have a significant impact on strategic supply management. Findings further support the link between strategic supply management and the performance of both buying and supplying firms. [source]


Product Technology Transfer in the Upstream Supply Chain

THE JOURNAL OF PRODUCT INNOVATION MANAGEMENT, Issue 6 2003
Mohan V. Tatikonda
This article addresses the transfer of new product technologies from outside the firm for integration into a new product system as part of a product development effort. Product technology transfer is a key activity in the complex process of new product development and is the fundamental link in the technology supply chain. Product technology transfer too often is dealt with in an ad-hoc fashion. Purposeful management of the product technology transfer process leads to more effective transfers in terms of timeliness, cost, functional performance, and competence building. Better management of product technology transfer gives firms access to a greater variety of new technology options, improves a firm's ability to offer significantly differentiated products, deepens the firm's competitive competencies, and positively influences sustained product development success. The central objective of this article is to gain insight into product technology transfer so that companies can manage this process more successfully and so that researchers can investigate this critical activity further. This article describes the technology supply chain as a unique form of a supply chain that poses a set of managerial challenges and requirements distinguishing it from the more traditional component supply chain. Because a single product technology transfer project is the fundamental piece in the technology supply chain, understanding this piece well is key to leveraging the extended technology supply chain and to improving overall product development performance. This article integrates literatures on new product development, supply chain management, and technology management and builds on organizational theory to present a conceptual model of determinants of product technology transfer success. The core proposition is that product technology transfer effectiveness is greatest when companies carefully match (or "fit") the type of technology to be transferred (the "technology uncertainty") with the type of relationship between the technology supplier and recipient (the "interorganizational interaction"). A quite detailed framework characterizing technology uncertainty along the dimensions of technology novelty, complexity, and tacitness is presented to help in assessing the challenges associated with transferring a particular product technology. This article also considers detailed elements characterizing the interorganizational interactions between the technology source and recipient firms. This helps firms consider the appropriate means to facilitate the interfirm process of technology transfer. Overall, this article provides practical insight into characterizing technologies and into improving the product technology transfer process. This article also provides a strong theoretical foundation to aid future research on product technology transfer in the technology supply chain. [source]


A Model of Supplier Integration into New Product Development*

THE JOURNAL OF PRODUCT INNOVATION MANAGEMENT, Issue 4 2003
Kenneth J. Petersen
In many industries, firms are looking for ways to cut concept-to-customer development time, to improve quality, and to reduce the cost of new products. One approach shown to be successful in Japanese organizations involves the integration of material suppliers early in the new product development cycle. This involvement may range from simple consultation with suppliers on design ideas to making suppliers fully responsible for the design of components or systems they will supply. While prior research shows the benefit of using this approach, execution remains a problem. The processes for identifying and integrating suppliers into the new product development (NPD) process in North American organizations are not understood well. This problem is compounded by the fact that design team members often are reluctant to listen to the technology and cost ideas made by suppliers in new product development efforts. We suggest a model of the key activities required for successful supplier integration into NPD projects, based on case studies with 17 Japanese and American manufacturing organizations. The model is validated using data from a survey of purchasing executives in global corporations with at least one successful and one unsuccessful supplier integration experience. The results suggest that (1) increased knowledge of a supplier is more likely to result in greater information sharing and involvement of the supplier in the product development process; (2) sharing of technology information results in higher levels of supplier involvement and improved outcomes; (3) supplier involvement on teams generally results in a higher achievement of NPD team goals; (4) in cases when technology uncertainty is present, suppliers and buyers are more likely to share information on NPD teams; and (5) the problems associated with technology uncertainty can be mitigated by greater use of technology sharing and direct supplier participation on new product development teams. A supplier's participation as a true member of a new product development team seems to result in the highest level of benefits, especially in cases when a technology is in its formative stages. [source]