Techniques Need (techniques + need)

Distribution by Scientific Domains


Selected Abstracts


Ground-penetrating radar survey of the Sny Magill Mound Group, Effigy Mounds National Monument, Iowa

GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 4 2008
William E. Whittaker
A ground-penetrating radar (GPR) survey of 101 mounds at the Sny Magill Unit of Effigy Mounds National Monument, Iowa, demonstrates that GPR can be an effective tool to evaluate the structure and condition of mounds without damaging them. Ideal survey conditions and improved processing technology allow for the identification of strata within the mounds, as well as areas of post-construction disturbance and possible archaeological features within the mounds. Provisional interpretations indicate that 60 are intact conical mounds with minimal post-construction disturbance, and two show very strong evidence of containing interior burial platforms; 29 are badly damaged by non-cultural or cultural activity; two are probable non-cultural mounds; nine are reasonably intact linear and effigy mounds; one is an excavated effigy mound. GPR and other remote-sensing techniques are highly recommended for mound investigation, but wherever possible such techniques need to be coordinated with mound excavation so as to test the remote-sensing results. © 2008 Wiley Periodicals, Inc. [source]


MECHANICAL,ACOUSTIC AND SENSORY EVALUATIONS OF CORNSTARCH,WHEY PROTEIN ISOLATE EXTRUDATES

JOURNAL OF TEXTURE STUDIES, Issue 4 2007
E.M. CHENG
ABSTRACT The mechanism relating sensory perception of brittle food foams to their mechanical and acoustic properties during crushing was investigated. Cornstarch was extruded with four levels of whey protein isolate (0, 6, 12 and 18%) and two levels of in-barrel moisture (23 and 27%). Hardness, fracturability and roughness of mass were three main sensory attributes that varied substantially between products. High correlations (r = 0.841,0.998) were observed between sensory attributes and instrumentally determined mechanical properties, including crushing force (11.2,57.9 N) and crispness work (4.6,75.8 N·mm). Based on acoustic data obtained during instrumental crushing, time-domain signal processing and a novel voice recognition technique utilizing frequency spectrograms were successfully employed for understanding the differences in the sensory properties of various products. Microstructure features, including average cell diameter (1.00,2.94 mm), average wall thickness (0.04,0.27 mm) and cell number density (7,193 cell/cm3), were characterized noninvasively using X-ray microtomography, and proved to be critical in relating sensory perception of the cellular extrudates to their mechanical,acoustic signatures. PRACTICAL APPLICATIONS The sensory perception of crispy and crunchy food products is primarily a function of their mechanical response and emission of sounds during fracture. The current study was focused on understanding these relationships in the context of brittle extruded foods. The mechanical,acoustic techniques outlined in this study have the potential of reducing the time, costs and subjectivity involved in evaluation of new foods by human panels, and can be a useful tool in the overall product development cycle. These techniques need not be limited only to food systems, as properties of any rigid, fracturable material can be characterized based on its mechanical,acoustic signature. [source]


Localized delivery of growth factors for periodontal tissue regeneration: Role, strategies, and perspectives,

MEDICINAL RESEARCH REVIEWS, Issue 3 2009
Fa-Ming Chen
Abstract Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. Localized delivery of growth factors to the periodontium is an emerging and versatile therapeutic approach, with the potential to become a powerful tool in future regenerative periodontal therapy. Optimized delivery regimes and well-defined release kinetics appear to be logical prerequisites for safe and efficacious clinical application of growth factors and to avoid unwanted side effects and toxicity. While adequate concentrations of growth factor(s) need to be appropriately localized, delivery vehicles are also expected to possess properties such as protein protection, precision in controlled release, biocompatibility and biodegradability, self-regulated therapeutic activity, potential for multiple delivery, and good cell/tissue penetration. Here, current knowledge, recent advances, and future possibilities of growth factor delivery strategies are outlined for periodontal regeneration. First, the role of those growth factors that have been implicated in the periodontal healing/regeneration process, general requirements for their delivery, and the different material types available are described. A detailed discussion follows of current strategies for the selection of devices for localized growth factor delivery, with particular emphasis placed upon their advantages and disadvantages and future prospects for ongoing studies in reconstructing the tooth supporting apparatus. © 2009 Wiley Periodicals, Inc. Med Res Rev, 29, No. 3, 472-513, 2009 [source]


Microwave measurement uncertainty due to applied magnetic field

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 12 2007
S. Perero
Abstract In recent years there has been a wide interest in the production and analysis of films and nanostructures of different types for their microwave properties up to the mm-wave range. In order to characterize the electromagnetic behavior of these devices new experimental techniques need to be developed and assessed. Typically the measurements involve the use of vector network analyzer, and require several calibration steps. In this paper, we present a summary of the calibration techniques and evaluate the uncertainties obtained under different conditions, with a particular focus on the effect of the applied magnetic field upon uncertainty. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]