Tethyan Ocean (tethyan + ocean)

Distribution by Scientific Domains


Selected Abstracts


Contribution of different kinematic models and a complex Jurassic stratigraphy in the construction of a forward model for the Montagna dei Fiori fault-related fold (Central Apennines, Italy)

GEOLOGICAL JOURNAL, Issue 5-6 2010
L. Di Francesco
Abstract The Montagna dei Fiori has received attention from geologists over the past decades because of both its Jurassic stratigraphy and its complex present-day structure. The latter is the result of multiple phases of deformation, from the Early Jurassic, during the opening of the Tethyan Ocean, to Neogene evolution of the Apennines fold-and-thrust belt. In this paper, we present a new stratigraphic interpretation of the Jurassic palaeogeography, based on a new geological mapping project in the area. Using this new stratigraphy, we constructed two forward models, using a combination of different fault/fold interactions, in order to unravel the kinematic evolution of the Montagna dei Fiori fault-related fold. The first model was constructed manually using the fault-bend and fault-propagation theories from an initial configuration which included previous extensional features, whereas the second model was constructed using the software 2DMove (Midland Valley) using the fault-bend and trishear fault-propagation folding theories and starting from a layer-cake stratigraphy. Both forward models involved the same main steps and provided a reasonable geological simulation of the geometry of the Montagna dei Fiori structure. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Palaeomagnetic evidence for the Gondwanian origin of the Taurides and rotation of the Isparta Angle, southern Turkey

GEOLOGICAL JOURNAL, Issue 4 2002
John D. A. Piper
Abstract The Taurides, the southernmost of the three major tectonic domains that constitute present-day Turkey, were emplaced following consumption of the Tethyan Ocean in Late Mesozoic to mid-Tertiary times. They are generally assigned an origin at the northern perimeter of Gondwana. To refine palaeogeographic control we have investigated the palaeomagnetism of a range of Jurassic rocks. Forty-nine samples of Upper Jurassic limestones preserve a dual polarity remanence (D/I=303/,9°, ,95=6°) interpreted as a primary magnetization acquired close to the equator and rotated during emplacement of the Taurides. Result from mid-Jurassic dolerites confirm a low palaeolatitude for the Tauride Platform during Jurassic times at the Afro,Arabian sector of Gondwana. Approximately 4000,km of Tethyan closure subsequently occurred between Late Jurassic and Eocene times. Although related Upper Jurassic limestones and Liassic redbeds preserve a sporadic record of similar remanence, the dominant signature in these latter rocks is an overprint of probable mid-Miocene age, probably acquired during a single polarity chron and imparted by migration of a fluid front during nappe loading. This is now rotated consistently anticlockwise by c. 30° and conforms to results of previous studies recording bulk Neogene rotation of the Isparta region following Lycian nappe emplacement. The regional distribution of this overprint implies that the Isparta Angle (IA) has been subject to only small additional closure (<10°) since Late Miocene time. A smaller amount (c. 6°) of clockwise rotation within the IA since Early Pliocene times is associated with an ongoing extensional regime and reflects an expanding curvature of the Tauride arc produced by southwestward extrusion of the Anatolian collage as a result of continuing northward motion of Afro,Arabia. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Isotopic and petrological evidence of fluid,rock interaction at a Tethyan ocean,continent transition in the Alps: implications for tectonic processes and carbon transfer during early ocean formation

GEOFLUIDS (ELECTRONIC), Issue 4 2007
A. ENGSTRÖM
Abstract We report overprinting stable isotope evidence of fluid,rock interaction below two detachment faults along which mantle rocks were exhumed to the seafloor, between the respective landward and seaward limits of oceanic and continental crust, at a Tethyan ocean,continent transition (OCT). This OCT, which is presently exposed in the Tasna nappe (south-eastern Switzerland) is considered an on-land analogue of the well-studied Iberian OCT. We compare our results with the fault architecture (fault core,damage zone,protolith) described by Caine et al. [Geology (1996) Vol. 24, pp. 1025,1028]. We confirm the existence of a sharp boundary between the fault core and damage zone based on isotopic data, but the boundary between the damage zone and protolith is gradational. We identify evidence for: (1) pervasive isotopic modification to 8.4 ± 0.1, which accompanied or post-dated serpentinization of these mantle rocks at an estimated temperature of 67,109°C, (2) either (i) partial isolation of some highly strained regions [fault core(s) and mylonite] from this pervasive isotopic modification, because of permeability reduction (Caine et al.) or (ii) subsequent isotopic modification caused by structurally channelled flow of warm fluids within these highly strained regions, because of permeability enhancement, and (3) isotopic modification, which is associated with extensive calcification at T = 54,100°C, primarily beneath the younger of the two detachment faults and post-dating initial serpentinization. By comparing the volumetric extent of calcification with an experimentally verified model for calcite precipitation in veins, we conclude that calcification could have occurred in response to seawater infiltration, with a calculated flux rate of 0.1,0.2 m year,1 and a minimum duration of 0.2,4.0 × 104 years. The associated time-averaged uptake flux of carbon during this period was 8,120 mol m,2 year,1. By comparison with the estimated area of exhumed mantle rocks at the Iberian OCT, we calculate a maximum annual uptake flux for carbon of 2,30 Tg year,1. This is an order of magnitude greater than that for carbon exchange at the mid-ocean ridges and 0.1,1.4% of the global oceanic uptake flux for carbon. [source]